2023-10-15 20:10:25 +03:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
from aiohttp import ClientSession
|
|
|
|
|
|
|
|
from ..typing import AsyncResult, Messages
|
|
|
|
from .base_provider import AsyncGeneratorProvider
|
|
|
|
|
|
|
|
models = {
|
2023-12-08 22:07:28 +03:00
|
|
|
"meta-llama/Llama-2-7b-chat-hf": "meta/llama-2-7b-chat",
|
|
|
|
"meta-llama/Llama-2-13b-chat-hf": "meta/llama-2-13b-chat",
|
|
|
|
"meta-llama/Llama-2-70b-chat-hf": "meta/llama-2-70b-chat",
|
2023-10-15 20:10:25 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
class Llama2(AsyncGeneratorProvider):
|
2023-10-27 23:59:14 +03:00
|
|
|
url = "https://www.llama2.ai"
|
|
|
|
working = True
|
|
|
|
supports_message_history = True
|
2023-10-15 20:10:25 +03:00
|
|
|
|
|
|
|
@classmethod
|
|
|
|
async def create_async_generator(
|
|
|
|
cls,
|
|
|
|
model: str,
|
|
|
|
messages: Messages,
|
|
|
|
proxy: str = None,
|
|
|
|
**kwargs
|
|
|
|
) -> AsyncResult:
|
|
|
|
if not model:
|
2023-12-08 22:07:28 +03:00
|
|
|
model = "meta/llama-2-70b-chat"
|
|
|
|
elif model in models:
|
|
|
|
model = models[model]
|
2023-10-15 20:10:25 +03:00
|
|
|
headers = {
|
|
|
|
"User-Agent": "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/118.0",
|
|
|
|
"Accept": "*/*",
|
|
|
|
"Accept-Language": "de,en-US;q=0.7,en;q=0.3",
|
|
|
|
"Accept-Encoding": "gzip, deflate, br",
|
|
|
|
"Referer": f"{cls.url}/",
|
|
|
|
"Content-Type": "text/plain;charset=UTF-8",
|
|
|
|
"Origin": cls.url,
|
|
|
|
"Connection": "keep-alive",
|
|
|
|
"Sec-Fetch-Dest": "empty",
|
|
|
|
"Sec-Fetch-Mode": "cors",
|
|
|
|
"Sec-Fetch-Site": "same-origin",
|
|
|
|
"Pragma": "no-cache",
|
|
|
|
"Cache-Control": "no-cache",
|
|
|
|
"TE": "trailers"
|
|
|
|
}
|
|
|
|
async with ClientSession(headers=headers) as session:
|
|
|
|
prompt = format_prompt(messages)
|
|
|
|
data = {
|
|
|
|
"prompt": prompt,
|
2023-12-08 22:07:28 +03:00
|
|
|
"model": model,
|
2023-10-15 20:10:25 +03:00
|
|
|
"systemPrompt": kwargs.get("system_message", "You are a helpful assistant."),
|
|
|
|
"temperature": kwargs.get("temperature", 0.75),
|
|
|
|
"topP": kwargs.get("top_p", 0.9),
|
2023-10-26 22:32:49 +03:00
|
|
|
"maxTokens": kwargs.get("max_tokens", 8000),
|
2023-10-15 20:10:25 +03:00
|
|
|
"image": None
|
|
|
|
}
|
|
|
|
started = False
|
|
|
|
async with session.post(f"{cls.url}/api", json=data, proxy=proxy) as response:
|
|
|
|
response.raise_for_status()
|
|
|
|
async for chunk in response.content.iter_any():
|
|
|
|
if not started:
|
|
|
|
chunk = chunk.lstrip()
|
|
|
|
started = True
|
2024-01-18 05:55:44 +03:00
|
|
|
yield chunk.decode(errors="ignore")
|
2023-10-15 20:10:25 +03:00
|
|
|
|
|
|
|
def format_prompt(messages: Messages):
|
|
|
|
messages = [
|
2023-10-26 22:32:49 +03:00
|
|
|
f"[INST] {message['content']} [/INST]"
|
2023-10-15 20:10:25 +03:00
|
|
|
if message["role"] == "user"
|
|
|
|
else message["content"]
|
|
|
|
for message in messages
|
|
|
|
]
|
2024-01-18 05:55:44 +03:00
|
|
|
return "\n".join(messages) + "\n"
|