mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-12-18 08:02:09 +03:00
338 lines
9.4 KiB
Python
338 lines
9.4 KiB
Python
|
import base64
|
||
|
import json
|
||
|
import uuid
|
||
|
|
||
|
import quickjs
|
||
|
from curl_cffi import requests
|
||
|
|
||
|
from ..typing import Any, CreateResult, TypedDict
|
||
|
from .base_provider import BaseProvider
|
||
|
|
||
|
|
||
|
class Vercel(BaseProvider):
|
||
|
url = "https://play.vercel.ai"
|
||
|
working = True
|
||
|
supports_gpt_35_turbo = True
|
||
|
|
||
|
@staticmethod
|
||
|
def create_completion(
|
||
|
model: str,
|
||
|
messages: list[dict[str, str]],
|
||
|
stream: bool,
|
||
|
**kwargs: Any,
|
||
|
) -> CreateResult:
|
||
|
if model in ["gpt-3.5-turbo", "gpt-4"]:
|
||
|
model = "openai:" + model
|
||
|
yield _chat(model_id=model, messages=messages)
|
||
|
|
||
|
|
||
|
def _chat(model_id: str, messages: list[dict[str, str]]) -> str:
|
||
|
session = requests.Session(impersonate="chrome107")
|
||
|
|
||
|
url = "https://sdk.vercel.ai/api/generate"
|
||
|
header = _create_header(session)
|
||
|
payload = _create_payload(model_id, messages)
|
||
|
|
||
|
response = session.post(url=url, headers=header, json=payload)
|
||
|
response.raise_for_status()
|
||
|
return response.text
|
||
|
|
||
|
|
||
|
def _create_payload(model_id: str, messages: list[dict[str, str]]) -> dict[str, Any]:
|
||
|
default_params = model_info[model_id]["default_params"]
|
||
|
return {
|
||
|
"messages": messages,
|
||
|
"playgroundId": str(uuid.uuid4()),
|
||
|
"chatIndex": 0,
|
||
|
"model": model_id,
|
||
|
} | default_params
|
||
|
|
||
|
|
||
|
def _create_header(session: requests.Session):
|
||
|
custom_encoding = _get_custom_encoding(session)
|
||
|
return {"custom-encoding": custom_encoding}
|
||
|
|
||
|
|
||
|
# based on https://github.com/ading2210/vercel-llm-api
|
||
|
def _get_custom_encoding(session: requests.Session):
|
||
|
url = "https://sdk.vercel.ai/openai.jpeg"
|
||
|
response = session.get(url=url)
|
||
|
|
||
|
data = json.loads(base64.b64decode(response.text, validate=True))
|
||
|
script = """
|
||
|
String.prototype.fontcolor = function() {{
|
||
|
return `<font>${{this}}</font>`
|
||
|
}}
|
||
|
var globalThis = {{marker: "mark"}};
|
||
|
({script})({key})
|
||
|
""".format(
|
||
|
script=data["c"], key=data["a"]
|
||
|
)
|
||
|
|
||
|
context = quickjs.Context() # type: ignore
|
||
|
token_data = json.loads(context.eval(script).json()) # type: ignore
|
||
|
token_data[2] = "mark"
|
||
|
token = {"r": token_data, "t": data["t"]}
|
||
|
token_str = json.dumps(token, separators=(",", ":")).encode("utf-16le")
|
||
|
return base64.b64encode(token_str).decode()
|
||
|
|
||
|
|
||
|
class ModelInfo(TypedDict):
|
||
|
id: str
|
||
|
default_params: dict[str, Any]
|
||
|
|
||
|
|
||
|
model_info: dict[str, ModelInfo] = {
|
||
|
"anthropic:claude-instant-v1": {
|
||
|
"id": "anthropic:claude-instant-v1",
|
||
|
"default_params": {
|
||
|
"temperature": 1,
|
||
|
"maxTokens": 200,
|
||
|
"topP": 1,
|
||
|
"topK": 1,
|
||
|
"presencePenalty": 1,
|
||
|
"frequencyPenalty": 1,
|
||
|
"stopSequences": ["\n\nHuman:"],
|
||
|
},
|
||
|
},
|
||
|
"anthropic:claude-v1": {
|
||
|
"id": "anthropic:claude-v1",
|
||
|
"default_params": {
|
||
|
"temperature": 1,
|
||
|
"maxTokens": 200,
|
||
|
"topP": 1,
|
||
|
"topK": 1,
|
||
|
"presencePenalty": 1,
|
||
|
"frequencyPenalty": 1,
|
||
|
"stopSequences": ["\n\nHuman:"],
|
||
|
},
|
||
|
},
|
||
|
"anthropic:claude-v2": {
|
||
|
"id": "anthropic:claude-v2",
|
||
|
"default_params": {
|
||
|
"temperature": 1,
|
||
|
"maxTokens": 200,
|
||
|
"topP": 1,
|
||
|
"topK": 1,
|
||
|
"presencePenalty": 1,
|
||
|
"frequencyPenalty": 1,
|
||
|
"stopSequences": ["\n\nHuman:"],
|
||
|
},
|
||
|
},
|
||
|
"replicate:a16z-infra/llama7b-v2-chat": {
|
||
|
"id": "replicate:a16z-infra/llama7b-v2-chat",
|
||
|
"default_params": {
|
||
|
"temperature": 0.75,
|
||
|
"maxTokens": 500,
|
||
|
"topP": 1,
|
||
|
"repetitionPenalty": 1,
|
||
|
},
|
||
|
},
|
||
|
"replicate:a16z-infra/llama13b-v2-chat": {
|
||
|
"id": "replicate:a16z-infra/llama13b-v2-chat",
|
||
|
"default_params": {
|
||
|
"temperature": 0.75,
|
||
|
"maxTokens": 500,
|
||
|
"topP": 1,
|
||
|
"repetitionPenalty": 1,
|
||
|
},
|
||
|
},
|
||
|
"huggingface:bigscience/bloom": {
|
||
|
"id": "huggingface:bigscience/bloom",
|
||
|
"default_params": {
|
||
|
"temperature": 0.5,
|
||
|
"maxTokens": 200,
|
||
|
"topP": 0.95,
|
||
|
"topK": 4,
|
||
|
"repetitionPenalty": 1.03,
|
||
|
},
|
||
|
},
|
||
|
"huggingface:google/flan-t5-xxl": {
|
||
|
"id": "huggingface:google/flan-t5-xxl",
|
||
|
"default_params": {
|
||
|
"temperature": 0.5,
|
||
|
"maxTokens": 200,
|
||
|
"topP": 0.95,
|
||
|
"topK": 4,
|
||
|
"repetitionPenalty": 1.03,
|
||
|
},
|
||
|
},
|
||
|
"huggingface:EleutherAI/gpt-neox-20b": {
|
||
|
"id": "huggingface:EleutherAI/gpt-neox-20b",
|
||
|
"default_params": {
|
||
|
"temperature": 0.5,
|
||
|
"maxTokens": 200,
|
||
|
"topP": 0.95,
|
||
|
"topK": 4,
|
||
|
"repetitionPenalty": 1.03,
|
||
|
"stopSequences": [],
|
||
|
},
|
||
|
},
|
||
|
"huggingface:OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5": {
|
||
|
"id": "huggingface:OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
|
||
|
"default_params": {"maxTokens": 200, "typicalP": 0.2, "repetitionPenalty": 1},
|
||
|
},
|
||
|
"huggingface:OpenAssistant/oasst-sft-1-pythia-12b": {
|
||
|
"id": "huggingface:OpenAssistant/oasst-sft-1-pythia-12b",
|
||
|
"default_params": {"maxTokens": 200, "typicalP": 0.2, "repetitionPenalty": 1},
|
||
|
},
|
||
|
"huggingface:bigcode/santacoder": {
|
||
|
"id": "huggingface:bigcode/santacoder",
|
||
|
"default_params": {
|
||
|
"temperature": 0.5,
|
||
|
"maxTokens": 200,
|
||
|
"topP": 0.95,
|
||
|
"topK": 4,
|
||
|
"repetitionPenalty": 1.03,
|
||
|
},
|
||
|
},
|
||
|
"cohere:command-light-nightly": {
|
||
|
"id": "cohere:command-light-nightly",
|
||
|
"default_params": {
|
||
|
"temperature": 0.9,
|
||
|
"maxTokens": 200,
|
||
|
"topP": 1,
|
||
|
"topK": 0,
|
||
|
"presencePenalty": 0,
|
||
|
"frequencyPenalty": 0,
|
||
|
"stopSequences": [],
|
||
|
},
|
||
|
},
|
||
|
"cohere:command-nightly": {
|
||
|
"id": "cohere:command-nightly",
|
||
|
"default_params": {
|
||
|
"temperature": 0.9,
|
||
|
"maxTokens": 200,
|
||
|
"topP": 1,
|
||
|
"topK": 0,
|
||
|
"presencePenalty": 0,
|
||
|
"frequencyPenalty": 0,
|
||
|
"stopSequences": [],
|
||
|
},
|
||
|
},
|
||
|
"openai:gpt-4": {
|
||
|
"id": "openai:gpt-4",
|
||
|
"default_params": {
|
||
|
"temperature": 0.7,
|
||
|
"maxTokens": 500,
|
||
|
"topP": 1,
|
||
|
"presencePenalty": 0,
|
||
|
"frequencyPenalty": 0,
|
||
|
"stopSequences": [],
|
||
|
},
|
||
|
},
|
||
|
"openai:gpt-4-0613": {
|
||
|
"id": "openai:gpt-4-0613",
|
||
|
"default_params": {
|
||
|
"temperature": 0.7,
|
||
|
"maxTokens": 500,
|
||
|
"topP": 1,
|
||
|
"presencePenalty": 0,
|
||
|
"frequencyPenalty": 0,
|
||
|
"stopSequences": [],
|
||
|
},
|
||
|
},
|
||
|
"openai:code-davinci-002": {
|
||
|
"id": "openai:code-davinci-002",
|
||
|
"default_params": {
|
||
|
"temperature": 0.5,
|
||
|
"maxTokens": 200,
|
||
|
"topP": 1,
|
||
|
"presencePenalty": 0,
|
||
|
"frequencyPenalty": 0,
|
||
|
"stopSequences": [],
|
||
|
},
|
||
|
},
|
||
|
"openai:gpt-3.5-turbo": {
|
||
|
"id": "openai:gpt-3.5-turbo",
|
||
|
"default_params": {
|
||
|
"temperature": 0.7,
|
||
|
"maxTokens": 500,
|
||
|
"topP": 1,
|
||
|
"topK": 1,
|
||
|
"presencePenalty": 1,
|
||
|
"frequencyPenalty": 1,
|
||
|
"stopSequences": [],
|
||
|
},
|
||
|
},
|
||
|
"openai:gpt-3.5-turbo-16k": {
|
||
|
"id": "openai:gpt-3.5-turbo-16k",
|
||
|
"default_params": {
|
||
|
"temperature": 0.7,
|
||
|
"maxTokens": 500,
|
||
|
"topP": 1,
|
||
|
"topK": 1,
|
||
|
"presencePenalty": 1,
|
||
|
"frequencyPenalty": 1,
|
||
|
"stopSequences": [],
|
||
|
},
|
||
|
},
|
||
|
"openai:gpt-3.5-turbo-16k-0613": {
|
||
|
"id": "openai:gpt-3.5-turbo-16k-0613",
|
||
|
"default_params": {
|
||
|
"temperature": 0.7,
|
||
|
"maxTokens": 500,
|
||
|
"topP": 1,
|
||
|
"topK": 1,
|
||
|
"presencePenalty": 1,
|
||
|
"frequencyPenalty": 1,
|
||
|
"stopSequences": [],
|
||
|
},
|
||
|
},
|
||
|
"openai:text-ada-001": {
|
||
|
"id": "openai:text-ada-001",
|
||
|
"default_params": {
|
||
|
"temperature": 0.5,
|
||
|
"maxTokens": 200,
|
||
|
"topP": 1,
|
||
|
"presencePenalty": 0,
|
||
|
"frequencyPenalty": 0,
|
||
|
"stopSequences": [],
|
||
|
},
|
||
|
},
|
||
|
"openai:text-babbage-001": {
|
||
|
"id": "openai:text-babbage-001",
|
||
|
"default_params": {
|
||
|
"temperature": 0.5,
|
||
|
"maxTokens": 200,
|
||
|
"topP": 1,
|
||
|
"presencePenalty": 0,
|
||
|
"frequencyPenalty": 0,
|
||
|
"stopSequences": [],
|
||
|
},
|
||
|
},
|
||
|
"openai:text-curie-001": {
|
||
|
"id": "openai:text-curie-001",
|
||
|
"default_params": {
|
||
|
"temperature": 0.5,
|
||
|
"maxTokens": 200,
|
||
|
"topP": 1,
|
||
|
"presencePenalty": 0,
|
||
|
"frequencyPenalty": 0,
|
||
|
"stopSequences": [],
|
||
|
},
|
||
|
},
|
||
|
"openai:text-davinci-002": {
|
||
|
"id": "openai:text-davinci-002",
|
||
|
"default_params": {
|
||
|
"temperature": 0.5,
|
||
|
"maxTokens": 200,
|
||
|
"topP": 1,
|
||
|
"presencePenalty": 0,
|
||
|
"frequencyPenalty": 0,
|
||
|
"stopSequences": [],
|
||
|
},
|
||
|
},
|
||
|
"openai:text-davinci-003": {
|
||
|
"id": "openai:text-davinci-003",
|
||
|
"default_params": {
|
||
|
"temperature": 0.5,
|
||
|
"maxTokens": 200,
|
||
|
"topP": 1,
|
||
|
"presencePenalty": 0,
|
||
|
"frequencyPenalty": 0,
|
||
|
"stopSequences": [],
|
||
|
},
|
||
|
},
|
||
|
}
|