gpt4free/g4f/models.py

309 lines
7.9 KiB
Python
Raw Normal View History

2023-10-01 05:27:21 +03:00
from __future__ import annotations
2023-09-18 00:23:54 +03:00
from dataclasses import dataclass
2023-10-01 05:27:21 +03:00
from .typing import Union
2023-10-06 13:24:41 +03:00
from .Provider import BaseProvider, RetryProvider
2023-10-01 05:27:21 +03:00
from .Provider import (
GptForLove,
2023-10-01 05:27:21 +03:00
ChatgptAi,
GptChatly,
2023-10-26 22:32:49 +03:00
DeepInfra,
2023-10-20 21:28:46 +03:00
ChatgptX,
ChatBase,
GeekGpt,
FakeGpt,
FreeGpt,
2023-10-15 20:10:25 +03:00
NoowAi,
2023-10-26 22:32:49 +03:00
Llama2,
2023-10-01 05:27:21 +03:00
Vercel,
Aichat,
2023-10-08 12:39:19 +03:00
GPTalk,
AiAsk,
2023-10-01 05:27:21 +03:00
GptGo,
Phind,
2023-10-01 05:27:21 +03:00
Bard,
Bing,
You,
2023-10-10 01:45:44 +03:00
H2o,
)
2023-09-18 00:23:54 +03:00
@dataclass(unsafe_hash=True)
2023-09-18 00:23:54 +03:00
class Model:
name: str
base_provider: str
best_provider: Union[type[BaseProvider], RetryProvider] = None
2023-10-19 17:14:48 +03:00
@staticmethod
def __all__() -> list[str]:
return _all_models
2023-09-18 00:23:54 +03:00
default = Model(
2023-10-01 05:27:21 +03:00
name = "",
base_provider = "",
best_provider = RetryProvider([
Bing, # Not fully GPT 3 or 4
AiAsk, Aichat, ChatgptAi, FreeGpt, GptGo, GeekGpt,
Phind, You
])
)
# GPT-3.5 too, but all providers supports long responses and a custom timeouts
gpt_35_long = Model(
name = 'gpt-3.5-turbo',
base_provider = 'openai',
best_provider = RetryProvider([
AiAsk, Aichat, FreeGpt, You,
GptChatly, GptForLove,
NoowAi, GeekGpt, Phind,
FakeGpt
2023-09-21 21:10:59 +03:00
])
)
2023-09-18 00:23:54 +03:00
# GPT-3.5 / GPT-4
gpt_35_turbo = Model(
2023-10-01 05:27:21 +03:00
name = 'gpt-3.5-turbo',
base_provider = 'openai',
2023-10-20 21:28:46 +03:00
best_provider=RetryProvider([
ChatgptX, GptGo, You,
NoowAi, GPTalk, GptForLove, Phind, ChatBase
2023-09-21 21:10:59 +03:00
])
2023-09-18 00:23:54 +03:00
)
gpt_4 = Model(
2023-10-01 05:27:21 +03:00
name = 'gpt-4',
base_provider = 'openai',
2023-10-10 16:11:17 +03:00
best_provider = RetryProvider([
Bing, GeekGpt, Phind
2023-10-10 16:11:17 +03:00
])
)
2023-09-18 00:23:54 +03:00
2023-10-26 22:32:49 +03:00
llama2_7b = Model(
name = "meta-llama/Llama-2-7b-chat-hf",
base_provider = 'huggingface',
best_provider = RetryProvider([Llama2, DeepInfra]))
llama2_13b = Model(
name ="meta-llama/Llama-2-13b-chat-hf",
base_provider = 'huggingface',
best_provider = RetryProvider([Llama2, DeepInfra]))
llama2_70b = Model(
name = "meta-llama/Llama-2-70b-chat-hf",
base_provider = "huggingface",
best_provider = RetryProvider([Llama2, DeepInfra]))
2023-09-18 00:23:54 +03:00
# Bard
palm = Model(
2023-10-01 05:27:21 +03:00
name = 'palm',
base_provider = 'google',
best_provider = Bard)
2023-09-18 00:23:54 +03:00
# H2o
falcon_7b = Model(
2023-10-01 05:27:21 +03:00
name = 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3',
base_provider = 'huggingface',
best_provider = H2o)
2023-09-18 00:23:54 +03:00
falcon_40b = Model(
2023-10-01 05:27:21 +03:00
name = 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1',
base_provider = 'huggingface',
best_provider = H2o)
2023-09-18 00:23:54 +03:00
llama_13b = Model(
2023-10-01 05:27:21 +03:00
name = 'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-13b',
base_provider = 'huggingface',
best_provider = H2o)
2023-09-18 00:23:54 +03:00
# Vercel
claude_instant_v1 = Model(
2023-10-01 05:27:21 +03:00
name = 'claude-instant-v1',
base_provider = 'anthropic',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
claude_v1 = Model(
2023-10-01 05:27:21 +03:00
name = 'claude-v1',
base_provider = 'anthropic',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
claude_v2 = Model(
2023-10-01 05:27:21 +03:00
name = 'claude-v2',
base_provider = 'anthropic',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
command_light_nightly = Model(
2023-10-01 05:27:21 +03:00
name = 'command-light-nightly',
base_provider = 'cohere',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
command_nightly = Model(
2023-10-01 05:27:21 +03:00
name = 'command-nightly',
base_provider = 'cohere',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
gpt_neox_20b = Model(
2023-10-01 05:27:21 +03:00
name = 'EleutherAI/gpt-neox-20b',
base_provider = 'huggingface',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
oasst_sft_1_pythia_12b = Model(
2023-10-01 05:27:21 +03:00
name = 'OpenAssistant/oasst-sft-1-pythia-12b',
base_provider = 'huggingface',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
oasst_sft_4_pythia_12b_epoch_35 = Model(
2023-10-01 05:27:21 +03:00
name = 'OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5',
base_provider = 'huggingface',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
santacoder = Model(
2023-10-01 05:27:21 +03:00
name = 'bigcode/santacoder',
base_provider = 'huggingface',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
bloom = Model(
2023-10-01 05:27:21 +03:00
name = 'bigscience/bloom',
base_provider = 'huggingface',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
flan_t5_xxl = Model(
2023-10-01 05:27:21 +03:00
name = 'google/flan-t5-xxl',
base_provider = 'huggingface',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
code_davinci_002 = Model(
2023-10-01 05:27:21 +03:00
name = 'code-davinci-002',
base_provider = 'openai',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
gpt_35_turbo_16k = Model(
2023-10-01 05:27:21 +03:00
name = 'gpt-3.5-turbo-16k',
base_provider = 'openai',
2023-10-19 21:37:56 +03:00
best_provider = gpt_35_long.best_provider)
2023-09-20 06:00:19 +03:00
2023-09-18 00:23:54 +03:00
gpt_35_turbo_16k_0613 = Model(
2023-10-01 05:27:21 +03:00
name = 'gpt-3.5-turbo-16k-0613',
2023-10-10 16:11:17 +03:00
base_provider = 'openai',
2023-10-19 21:37:56 +03:00
best_provider = gpt_35_long.best_provider
2023-10-10 16:11:17 +03:00
)
2023-09-22 22:36:44 +03:00
gpt_35_turbo_0613 = Model(
2023-10-01 05:27:21 +03:00
name = 'gpt-3.5-turbo-0613',
2023-10-10 01:45:44 +03:00
base_provider = 'openai',
2023-10-11 20:56:53 +03:00
best_provider = gpt_35_turbo.best_provider
)
2023-09-18 00:23:54 +03:00
gpt_4_0613 = Model(
2023-10-01 05:27:21 +03:00
name = 'gpt-4-0613',
2023-10-10 16:11:17 +03:00
base_provider = 'openai',
2023-10-11 20:56:53 +03:00
best_provider = gpt_4.best_provider
2023-10-07 20:10:26 +03:00
)
gpt_4_32k = Model(
2023-10-01 05:27:21 +03:00
name = 'gpt-4-32k',
2023-10-10 16:11:17 +03:00
base_provider = 'openai',
2023-10-11 20:56:53 +03:00
best_provider = gpt_4.best_provider
2023-10-07 20:10:26 +03:00
)
gpt_4_32k_0613 = Model(
2023-10-01 05:27:21 +03:00
name = 'gpt-4-32k-0613',
2023-10-10 16:11:17 +03:00
base_provider = 'openai',
2023-10-11 20:56:53 +03:00
best_provider = gpt_4.best_provider
2023-10-07 20:10:26 +03:00
)
2023-09-18 00:23:54 +03:00
text_ada_001 = Model(
2023-10-01 05:27:21 +03:00
name = 'text-ada-001',
base_provider = 'openai',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
text_babbage_001 = Model(
2023-10-01 05:27:21 +03:00
name = 'text-babbage-001',
base_provider = 'openai',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
text_curie_001 = Model(
2023-10-01 05:27:21 +03:00
name = 'text-curie-001',
base_provider = 'openai',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
text_davinci_002 = Model(
2023-10-01 05:27:21 +03:00
name = 'text-davinci-002',
base_provider = 'openai',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
text_davinci_003 = Model(
2023-10-01 05:27:21 +03:00
name = 'text-davinci-003',
base_provider = 'openai',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
llama13b_v2_chat = Model(
2023-10-01 05:27:21 +03:00
name = 'replicate:a16z-infra/llama13b-v2-chat',
base_provider = 'replicate',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
llama7b_v2_chat = Model(
2023-10-01 05:27:21 +03:00
name = 'replicate:a16z-infra/llama7b-v2-chat',
base_provider = 'replicate',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
2023-10-19 17:14:48 +03:00
llama70b_v2_chat = Model(
name = 'replicate/llama70b-v2-chat',
base_provider = 'replicate',
best_provider = Vercel)
2023-09-18 00:23:54 +03:00
class ModelUtils:
convert: dict[str, Model] = {
2023-10-01 05:27:21 +03:00
# gpt-3.5
'gpt-3.5-turbo' : gpt_35_turbo,
2023-10-06 21:53:17 +03:00
'gpt-3.5-turbo-0613' : gpt_35_turbo_0613,
2023-10-01 05:27:21 +03:00
'gpt-3.5-turbo-16k' : gpt_35_turbo_16k,
'gpt-3.5-turbo-16k-0613' : gpt_35_turbo_16k_0613,
# gpt-4
'gpt-4' : gpt_4,
'gpt-4-0613' : gpt_4_0613,
'gpt-4-32k' : gpt_4_32k,
'gpt-4-32k-0613' : gpt_4_32k_0613,
2023-10-26 22:42:30 +03:00
# Llama 2
'llama2-7b' : llama2_7b,
'llama2-13b': llama2_13b,
'llama2-70b': llama2_70b,
2023-10-01 05:27:21 +03:00
2023-09-18 00:23:54 +03:00
# Bard
2023-10-01 05:27:21 +03:00
'palm2' : palm,
'palm' : palm,
'google' : palm,
'google-bard' : palm,
'google-palm' : palm,
'bard' : palm,
2023-09-18 00:23:54 +03:00
# H2o
2023-10-01 05:27:21 +03:00
'falcon-40b' : falcon_40b,
'falcon-7b' : falcon_7b,
'llama-13b' : llama_13b,
2023-09-18 00:23:54 +03:00
# Vercel
2023-10-19 17:14:48 +03:00
#'claude-instant-v1' : claude_instant_v1,
#'claude-v1' : claude_v1,
#'claude-v2' : claude_v2,
2023-10-01 05:27:21 +03:00
'command-nightly' : command_nightly,
'gpt-neox-20b' : gpt_neox_20b,
'santacoder' : santacoder,
'bloom' : bloom,
'flan-t5-xxl' : flan_t5_xxl,
'code-davinci-002' : code_davinci_002,
'text-ada-001' : text_ada_001,
'text-babbage-001' : text_babbage_001,
'text-curie-001' : text_curie_001,
'text-davinci-002' : text_davinci_002,
'text-davinci-003' : text_davinci_003,
2023-10-19 17:14:48 +03:00
'llama70b-v2-chat' : llama70b_v2_chat,
2023-10-01 05:27:21 +03:00
'llama13b-v2-chat' : llama13b_v2_chat,
'llama7b-v2-chat' : llama7b_v2_chat,
'oasst-sft-1-pythia-12b' : oasst_sft_1_pythia_12b,
'oasst-sft-4-pythia-12b-epoch-3.5' : oasst_sft_4_pythia_12b_epoch_35,
'command-light-nightly' : command_light_nightly,
}
2023-10-19 17:14:48 +03:00
_all_models = list(ModelUtils.convert.keys())