gpt4free/g4f/client/stubs.py

151 lines
4.2 KiB
Python
Raw Normal View History

2024-04-06 21:37:07 +03:00
from __future__ import annotations
from typing import Optional, List, Dict
from time import time
2024-04-06 21:37:07 +03:00
from .helper import filter_none
try:
from pydantic import BaseModel, Field
except ImportError:
class BaseModel():
@classmethod
def model_construct(cls, **data):
new = cls()
for key, value in data.items():
setattr(new, key, value)
return new
class Field():
def __init__(self, **config):
pass
class ChatCompletionChunk(BaseModel):
id: str
object: str
created: int
model: str
provider: Optional[str]
choices: List[ChatCompletionDeltaChoice]
2024-04-06 21:37:07 +03:00
@classmethod
def model_construct(
cls,
2024-04-06 21:37:07 +03:00
content: str,
finish_reason: str,
completion_id: str = None,
created: int = None
):
return super().model_construct(
id=f"chatcmpl-{completion_id}" if completion_id else None,
object="chat.completion.cunk",
created=created,
model=None,
provider=None,
choices=[ChatCompletionDeltaChoice.model_construct(
ChatCompletionDelta.model_construct(content),
finish_reason
)]
)
class ChatCompletionMessage(BaseModel):
role: str
content: str
@classmethod
def model_construct(cls, content: str):
return super().model_construct(role="assistant", content=content)
class ChatCompletionChoice(BaseModel):
index: int
message: ChatCompletionMessage
finish_reason: str
@classmethod
def model_construct(cls, message: ChatCompletionMessage, finish_reason: str):
return super().model_construct(index=0, message=message, finish_reason=finish_reason)
class ChatCompletion(BaseModel):
id: str
object: str
created: int
model: str
provider: Optional[str]
choices: List[ChatCompletionChoice]
usage: Dict[str, int] = Field(examples=[{
"prompt_tokens": 0, #prompt_tokens,
"completion_tokens": 0, #completion_tokens,
"total_tokens": 0, #prompt_tokens + completion_tokens,
}])
@classmethod
def model_construct(
cls,
2024-04-06 21:37:07 +03:00
content: str,
finish_reason: str,
completion_id: str = None,
created: int = None
):
return super().model_construct(
id=f"chatcmpl-{completion_id}" if completion_id else None,
object="chat.completion",
created=created,
model=None,
provider=None,
choices=[ChatCompletionChoice.model_construct(
ChatCompletionMessage.model_construct(content),
finish_reason
)],
usage={
"prompt_tokens": 0, #prompt_tokens,
"completion_tokens": 0, #completion_tokens,
"total_tokens": 0, #prompt_tokens + completion_tokens,
}
)
class ChatCompletionDelta(BaseModel):
role: str
content: str
@classmethod
def model_construct(cls, content: Optional[str]):
return super().model_construct(role="assistant", content=content)
class ChatCompletionDeltaChoice(BaseModel):
index: int
delta: ChatCompletionDelta
finish_reason: Optional[str]
@classmethod
def model_construct(cls, delta: ChatCompletionDelta, finish_reason: Optional[str]):
return super().model_construct(index=0, delta=delta, finish_reason=finish_reason)
class Image(BaseModel):
url: Optional[str]
b64_json: Optional[str]
revised_prompt: Optional[str]
@classmethod
def model_construct(cls, url: str = None, b64_json: str = None, revised_prompt: str = None):
return super().model_construct(**filter_none(
url=url,
b64_json=b64_json,
revised_prompt=revised_prompt
))
class ImagesResponse(BaseModel):
data: list[Image]
model: str
provider: str
created: int
@classmethod
def model_construct(cls, data: list[Image], created: int = None, model: str = None, provider: str = None):
if created is None:
created = int(time())
return super().model_construct(
data=data,
model=model,
provider=provider,
created=created
)