mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-12-29 14:11:40 +03:00
76 lines
3.0 KiB
Python
76 lines
3.0 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
from aiohttp import ClientSession
|
||
|
|
||
|
from ..typing import AsyncResult, Messages
|
||
|
from .base_provider import AsyncGeneratorProvider
|
||
|
|
||
|
models = {
|
||
|
"7B": {"name": "Llama 2 7B", "version": "d24902e3fa9b698cc208b5e63136c4e26e828659a9f09827ca6ec5bb83014381", "shortened":"7B"},
|
||
|
"13B": {"name": "Llama 2 13B", "version": "9dff94b1bed5af738655d4a7cbcdcde2bd503aa85c94334fe1f42af7f3dd5ee3", "shortened":"13B"},
|
||
|
"70B": {"name": "Llama 2 70B", "version": "2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf", "shortened":"70B"},
|
||
|
"Llava": {"name": "Llava 13B", "version": "6bc1c7bb0d2a34e413301fee8f7cc728d2d4e75bfab186aa995f63292bda92fc", "shortened":"Llava"}
|
||
|
}
|
||
|
|
||
|
class Llama2(AsyncGeneratorProvider):
|
||
|
url = "https://www.llama2.ai"
|
||
|
supports_gpt_35_turbo = True
|
||
|
working = True
|
||
|
|
||
|
@classmethod
|
||
|
async def create_async_generator(
|
||
|
cls,
|
||
|
model: str,
|
||
|
messages: Messages,
|
||
|
proxy: str = None,
|
||
|
**kwargs
|
||
|
) -> AsyncResult:
|
||
|
if not model:
|
||
|
model = "70B"
|
||
|
if model not in models:
|
||
|
raise ValueError(f"Model are not supported: {model}")
|
||
|
version = models[model]["version"]
|
||
|
headers = {
|
||
|
"User-Agent": "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/118.0",
|
||
|
"Accept": "*/*",
|
||
|
"Accept-Language": "de,en-US;q=0.7,en;q=0.3",
|
||
|
"Accept-Encoding": "gzip, deflate, br",
|
||
|
"Referer": f"{cls.url}/",
|
||
|
"Content-Type": "text/plain;charset=UTF-8",
|
||
|
"Origin": cls.url,
|
||
|
"Connection": "keep-alive",
|
||
|
"Sec-Fetch-Dest": "empty",
|
||
|
"Sec-Fetch-Mode": "cors",
|
||
|
"Sec-Fetch-Site": "same-origin",
|
||
|
"Pragma": "no-cache",
|
||
|
"Cache-Control": "no-cache",
|
||
|
"TE": "trailers"
|
||
|
}
|
||
|
async with ClientSession(headers=headers) as session:
|
||
|
prompt = format_prompt(messages)
|
||
|
data = {
|
||
|
"prompt": prompt,
|
||
|
"version": version,
|
||
|
"systemPrompt": kwargs.get("system_message", "You are a helpful assistant."),
|
||
|
"temperature": kwargs.get("temperature", 0.75),
|
||
|
"topP": kwargs.get("top_p", 0.9),
|
||
|
"maxTokens": kwargs.get("max_tokens", 1024),
|
||
|
"image": None
|
||
|
}
|
||
|
started = False
|
||
|
async with session.post(f"{cls.url}/api", json=data, proxy=proxy) as response:
|
||
|
response.raise_for_status()
|
||
|
async for chunk in response.content.iter_any():
|
||
|
if not started:
|
||
|
chunk = chunk.lstrip()
|
||
|
started = True
|
||
|
yield chunk.decode()
|
||
|
|
||
|
def format_prompt(messages: Messages):
|
||
|
messages = [
|
||
|
f"[INST]{message['content']}[/INST]"
|
||
|
if message["role"] == "user"
|
||
|
else message["content"]
|
||
|
for message in messages
|
||
|
]
|
||
|
return "\n".join(messages)
|