mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-12-29 14:11:40 +03:00
~ | Merge pull request #920 from chatgpt-tricks/main
Adding embedding support to the interference proxy
This commit is contained in:
commit
2cb59b4e10
@ -279,6 +279,9 @@ asyncio.run(run_async())
|
||||
|
||||
### interference openai-proxy api (use with openai python package)
|
||||
|
||||
If you want to use the embedding function, you need to get a huggingface token. You can get one at https://huggingface.co/settings/tokens make sure your role is set to write. If you have your token, just use it instead of the OpenAI api-key.
|
||||
|
||||
|
||||
get requirements:
|
||||
|
||||
```sh
|
||||
@ -294,7 +297,7 @@ python3 -m interference.app
|
||||
```py
|
||||
import openai
|
||||
|
||||
openai.api_key = ""
|
||||
openai.api_key = "Empty if you don't use embeddings, otherwise your hugginface token"
|
||||
openai.api_base = "http://localhost:1337"
|
||||
|
||||
|
||||
|
@ -3,10 +3,10 @@ import random
|
||||
import string
|
||||
import time
|
||||
from typing import Any
|
||||
|
||||
import requests
|
||||
from flask import Flask, request
|
||||
from flask_cors import CORS
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
from g4f import ChatCompletion
|
||||
|
||||
app = Flask(__name__)
|
||||
@ -88,9 +88,73 @@ def chat_completions():
|
||||
return app.response_class(streaming(), mimetype="text/event-stream")
|
||||
|
||||
|
||||
#Get the embedding from huggingface
|
||||
def get_embedding(input_text, token):
|
||||
huggingface_token = token
|
||||
embedding_model = "sentence-transformers/all-mpnet-base-v2"
|
||||
max_token_length = 500
|
||||
|
||||
# Load the tokenizer for the "all-mpnet-base-v2" model
|
||||
tokenizer = AutoTokenizer.from_pretrained(embedding_model)
|
||||
# Tokenize the text and split the tokens into chunks of 500 tokens each
|
||||
tokens = tokenizer.tokenize(input_text)
|
||||
token_chunks = [tokens[i:i + max_token_length] for i in range(0, len(tokens), max_token_length)]
|
||||
|
||||
# Initialize an empty list
|
||||
embeddings = []
|
||||
|
||||
# Create embeddings for each chunk
|
||||
for chunk in token_chunks:
|
||||
# Convert the chunk tokens back to text
|
||||
chunk_text = tokenizer.convert_tokens_to_string(chunk)
|
||||
|
||||
# Use the Hugging Face API to get embeddings for the chunk
|
||||
api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{embedding_model}"
|
||||
headers = {"Authorization": f"Bearer {huggingface_token}"}
|
||||
chunk_text = chunk_text.replace("\n", " ")
|
||||
|
||||
# Make a POST request to get the chunk's embedding
|
||||
response = requests.post(api_url, headers=headers, json={"inputs": chunk_text, "options": {"wait_for_model": True}})
|
||||
|
||||
# Parse the response and extract the embedding
|
||||
chunk_embedding = response.json()
|
||||
# Append the embedding to the list
|
||||
embeddings.append(chunk_embedding)
|
||||
|
||||
#averaging all the embeddings
|
||||
#this isn't very effective
|
||||
#someone a better idea?
|
||||
num_embeddings = len(embeddings)
|
||||
average_embedding = [sum(x) / num_embeddings for x in zip(*embeddings)]
|
||||
embedding = average_embedding
|
||||
return embedding
|
||||
|
||||
|
||||
@app.route("/embeddings", methods=["POST"])
|
||||
def embeddings():
|
||||
input_text_list = request.get_json().get("input")
|
||||
input_text = ' '.join(map(str, input_text_list))
|
||||
token = request.headers.get('Authorization').replace("Bearer ", "")
|
||||
embedding = get_embedding(input_text, token)
|
||||
return {
|
||||
"data": [
|
||||
{
|
||||
"embedding": embedding,
|
||||
"index": 0,
|
||||
"object": "embedding"
|
||||
}
|
||||
],
|
||||
"model": "text-embedding-ada-002",
|
||||
"object": "list",
|
||||
"usage": {
|
||||
"prompt_tokens": None,
|
||||
"total_tokens": None
|
||||
}
|
||||
}
|
||||
|
||||
def main():
|
||||
app.run(host="0.0.0.0", port=1337, debug=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main()
|
||||
|
Loading…
Reference in New Issue
Block a user