mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-12-28 21:53:11 +03:00
~ | Merge pull request #907 from MIDORIBIN/fix-type-hint
~ | Fix type hint
This commit is contained in:
commit
489748892b
10
README.md
10
README.md
@ -145,7 +145,7 @@ import g4f
|
||||
|
||||
print(g4f.Provider.Ails.params) # supported args
|
||||
|
||||
# Automatic selection of provider
|
||||
# Automatic selection of Provider
|
||||
|
||||
# streamed completion
|
||||
response = g4f.ChatCompletion.create(
|
||||
@ -166,7 +166,7 @@ response = g4f.ChatCompletion.create(
|
||||
print(response)
|
||||
|
||||
|
||||
# Set with provider
|
||||
# Set with Provider
|
||||
response = g4f.ChatCompletion.create(
|
||||
model="gpt-3.5-turbo",
|
||||
provider=g4f.Provider.DeepAi,
|
||||
@ -474,8 +474,8 @@ if __name__ == "__main__":
|
||||
|
||||
to add another provider, its very simple:
|
||||
|
||||
1. create a new file in [g4f/provider](./g4f/provider) with the name of the Provider
|
||||
2. Implement a class that extends [BaseProvider](./g4f/provider/base_provider.py).
|
||||
1. create a new file in [g4f/Provider](./g4f/Provider) with the name of the Provider
|
||||
2. Implement a class that extends [BaseProvider](./g4f/Provider/base_provider.py).
|
||||
|
||||
```py
|
||||
from .base_provider import BaseProvider
|
||||
@ -499,7 +499,7 @@ class HogeService(BaseProvider):
|
||||
|
||||
3. Here, you can adjust the settings, for example if the website does support streaming, set `working` to `True`...
|
||||
4. Write code to request the provider in `create_completion` and `yield` the response, _even if_ its a one-time response, do not hesitate to look at other providers for inspiration
|
||||
5. Add the Provider Name in [g4f/provider/**init**.py](./g4f/provider/__init__.py)
|
||||
5. Add the Provider Name in [g4f/provider/\_\_init__.py](./g4f/Provider/__init__.py)
|
||||
|
||||
```py
|
||||
from .base_provider import BaseProvider
|
||||
|
@ -70,4 +70,4 @@ class AItianhu(AsyncGeneratorProvider):
|
||||
("top_p", "int"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
||||
|
@ -85,7 +85,7 @@ class Ails(AsyncGeneratorProvider):
|
||||
("temperature", "float"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
||||
|
||||
|
||||
def _hash(json_data: dict[str, str]) -> SHA256:
|
||||
|
@ -75,4 +75,4 @@ class Aivvm(AsyncGeneratorProvider):
|
||||
("temperature", "float"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
||||
|
@ -88,4 +88,4 @@ class Bard(AsyncProvider):
|
||||
("proxy", "str"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
||||
|
@ -59,4 +59,4 @@ class ChatBase(AsyncGeneratorProvider):
|
||||
("stream", "bool"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
@ -64,4 +64,4 @@ class ChatgptLogin(AsyncProvider):
|
||||
("temperature", "float"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
@ -60,4 +60,4 @@ class CodeLinkAva(AsyncGeneratorProvider):
|
||||
("temperature", "float"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
@ -74,4 +74,4 @@ class DfeHub(BaseProvider):
|
||||
("top_p", "int"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
||||
|
@ -108,4 +108,4 @@ class EasyChat(BaseProvider):
|
||||
("active_server", "int"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
||||
|
@ -78,4 +78,4 @@ class Equing(BaseProvider):
|
||||
("stream", "bool"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
@ -83,4 +83,4 @@ class FastGpt(ABC):
|
||||
("stream", "bool"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
@ -66,7 +66,7 @@ class GetGpt(BaseProvider):
|
||||
('max_tokens', 'int'),
|
||||
]
|
||||
param = ', '.join([': '.join(p) for p in params])
|
||||
return f'g4f.provider.{cls.__name__} supports: ({param})'
|
||||
return f'g4f.Provider.{cls.__name__} supports: ({param})'
|
||||
|
||||
|
||||
def _encrypt(e: str):
|
||||
|
@ -98,4 +98,4 @@ class H2o(AsyncGeneratorProvider):
|
||||
("return_full_text", "bool"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
||||
|
@ -103,4 +103,4 @@ class HuggingChat(AsyncGeneratorProvider):
|
||||
("proxy", "str"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
||||
|
@ -88,4 +88,4 @@ class Liaobots(AsyncGeneratorProvider):
|
||||
("auth", "str"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
||||
|
@ -61,4 +61,4 @@ class Lockchat(BaseProvider):
|
||||
("temperature", "float"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
||||
|
@ -99,4 +99,4 @@ class OpenAssistant(AsyncGeneratorProvider):
|
||||
("proxy", "str"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
||||
|
@ -91,4 +91,4 @@ class OpenaiChat(AsyncProvider):
|
||||
("cookies", "dict[str, str]")
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
@ -69,4 +69,4 @@ class Raycast(BaseProvider):
|
||||
("auth", "str"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
||||
|
@ -94,4 +94,4 @@ class Theb(BaseProvider):
|
||||
("top_p", "int")
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
@ -64,4 +64,4 @@ class V50(BaseProvider):
|
||||
("top_p", "int"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
||||
|
@ -63,4 +63,4 @@ class Vitalentum(AsyncGeneratorProvider):
|
||||
("temperature", "float"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
@ -60,4 +60,4 @@ class Wuguokai(BaseProvider):
|
||||
("stream", "bool")
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
||||
|
@ -73,4 +73,4 @@ class Ylokh(AsyncGeneratorProvider):
|
||||
("temperature", "float"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
@ -34,7 +34,7 @@ class BaseProvider(ABC):
|
||||
("stream", "bool"),
|
||||
]
|
||||
param = ", ".join([": ".join(p) for p in params])
|
||||
return f"g4f.provider.{cls.__name__} supports: ({param})"
|
||||
return f"g4f.Provider.{cls.__name__} supports: ({param})"
|
||||
|
||||
|
||||
_cookies = {}
|
||||
|
@ -6,6 +6,7 @@ import random
|
||||
|
||||
logging = False
|
||||
|
||||
|
||||
class ChatCompletion:
|
||||
@staticmethod
|
||||
def create(
|
||||
@ -21,9 +22,8 @@ class ChatCompletion:
|
||||
except KeyError:
|
||||
raise Exception(f'The model: {model} does not exist')
|
||||
|
||||
|
||||
if not provider:
|
||||
if isinstance(model.best_provider, tuple):
|
||||
if isinstance(model.best_provider, list):
|
||||
provider = random.choice(model.best_provider)
|
||||
else:
|
||||
provider = model.best_provider
|
||||
|
212
g4f/models.py
212
g4f/models.py
@ -1,212 +0,0 @@
|
||||
from __future__ import annotations
|
||||
from dataclasses import dataclass
|
||||
from .Provider import BaseProvider, Bard, H2o, Vercel
|
||||
from .Provider import Aichat, Aivvm, ChatBase, ChatgptAi, ChatgptLogin, CodeLinkAva
|
||||
from .Provider import DeepAi, Vercel, Vitalentum, Ylokh, You, Yqcloud
|
||||
from .typing import Union
|
||||
|
||||
@dataclass
|
||||
class Model:
|
||||
name: str
|
||||
base_provider: str
|
||||
best_provider: Union[type[BaseProvider], tuple[type[BaseProvider]]] = None
|
||||
|
||||
# Config for HuggingChat, OpenAssistant
|
||||
# Works for Liaobots, H2o, OpenaiChat, Yqcloud, You
|
||||
default = Model(
|
||||
name="",
|
||||
base_provider="huggingface"
|
||||
)
|
||||
|
||||
# GPT-3.5 / GPT-4
|
||||
gpt_35_turbo = Model(
|
||||
name = 'gpt-3.5-turbo',
|
||||
base_provider = 'openai',
|
||||
best_provider = (
|
||||
Vercel, Aichat, Aivvm, ChatBase, ChatgptAi, ChatgptLogin,
|
||||
CodeLinkAva, DeepAi, Vitalentum, Ylokh, You, Yqcloud
|
||||
)
|
||||
)
|
||||
|
||||
gpt_4 = Model(
|
||||
name = 'gpt-4',
|
||||
base_provider = 'openai',
|
||||
)
|
||||
|
||||
# Bard
|
||||
palm = Model(
|
||||
name = 'palm',
|
||||
base_provider = 'google',
|
||||
best_provider = Bard)
|
||||
|
||||
# H2o
|
||||
falcon_7b = Model(
|
||||
name = 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3',
|
||||
base_provider = 'huggingface',
|
||||
best_provider = H2o)
|
||||
|
||||
falcon_40b = Model(
|
||||
name = 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1',
|
||||
base_provider = 'huggingface',
|
||||
best_provider = H2o)
|
||||
|
||||
llama_13b = Model(
|
||||
name = 'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-13b',
|
||||
base_provider = 'huggingface',
|
||||
best_provider = H2o)
|
||||
|
||||
# Vercel
|
||||
claude_instant_v1 = Model(
|
||||
name = 'anthropic:claude-instant-v1',
|
||||
base_provider = 'anthropic',
|
||||
best_provider = Vercel)
|
||||
|
||||
claude_v1 = Model(
|
||||
name = 'anthropic:claude-v1',
|
||||
base_provider = 'anthropic',
|
||||
best_provider = Vercel)
|
||||
|
||||
claude_v2 = Model(
|
||||
name = 'anthropic:claude-v2',
|
||||
base_provider = 'anthropic',
|
||||
best_provider = Vercel)
|
||||
|
||||
command_light_nightly = Model(
|
||||
name = 'cohere:command-light-nightly',
|
||||
base_provider = 'cohere',
|
||||
best_provider = Vercel)
|
||||
|
||||
command_nightly = Model(
|
||||
name = 'cohere:command-nightly',
|
||||
base_provider = 'cohere',
|
||||
best_provider = Vercel)
|
||||
|
||||
gpt_neox_20b = Model(
|
||||
name = 'huggingface:EleutherAI/gpt-neox-20b',
|
||||
base_provider = 'huggingface',
|
||||
best_provider = Vercel)
|
||||
|
||||
oasst_sft_1_pythia_12b = Model(
|
||||
name = 'huggingface:OpenAssistant/oasst-sft-1-pythia-12b',
|
||||
base_provider = 'huggingface',
|
||||
best_provider = Vercel)
|
||||
|
||||
oasst_sft_4_pythia_12b_epoch_35 = Model(
|
||||
name = 'huggingface:OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5',
|
||||
base_provider = 'huggingface',
|
||||
best_provider = Vercel)
|
||||
|
||||
santacoder = Model(
|
||||
name = 'huggingface:bigcode/santacoder',
|
||||
base_provider = 'huggingface',
|
||||
best_provider = Vercel)
|
||||
|
||||
bloom = Model(
|
||||
name = 'huggingface:bigscience/bloom',
|
||||
base_provider = 'huggingface',
|
||||
best_provider = Vercel)
|
||||
|
||||
flan_t5_xxl = Model(
|
||||
name = 'huggingface:google/flan-t5-xxl',
|
||||
base_provider = 'huggingface',
|
||||
best_provider = Vercel)
|
||||
|
||||
code_davinci_002 = Model(
|
||||
name = 'openai:code-davinci-002',
|
||||
base_provider = 'openai',
|
||||
best_provider = Vercel)
|
||||
|
||||
gpt_35_turbo_16k = Model(
|
||||
name = 'openai:gpt-3.5-turbo-16k',
|
||||
base_provider = 'openai',
|
||||
best_provider = Vercel)
|
||||
|
||||
gpt_35_turbo_16k_0613 = Model(
|
||||
name = 'openai:gpt-3.5-turbo-16k-0613',
|
||||
base_provider = 'openai')
|
||||
|
||||
gpt_4_0613 = Model(
|
||||
name = 'openai:gpt-4-0613',
|
||||
base_provider = 'openai',
|
||||
best_provider = Vercel)
|
||||
|
||||
text_ada_001 = Model(
|
||||
name = 'openai:text-ada-001',
|
||||
base_provider = 'openai',
|
||||
best_provider = Vercel)
|
||||
|
||||
text_babbage_001 = Model(
|
||||
name = 'openai:text-babbage-001',
|
||||
base_provider = 'openai',
|
||||
best_provider = Vercel)
|
||||
|
||||
text_curie_001 = Model(
|
||||
name = 'openai:text-curie-001',
|
||||
base_provider = 'openai',
|
||||
best_provider = Vercel)
|
||||
|
||||
text_davinci_002 = Model(
|
||||
name = 'openai:text-davinci-002',
|
||||
base_provider = 'openai',
|
||||
best_provider = Vercel)
|
||||
|
||||
text_davinci_003 = Model(
|
||||
name = 'openai:text-davinci-003',
|
||||
base_provider = 'openai',
|
||||
best_provider = Vercel)
|
||||
|
||||
llama13b_v2_chat = Model(
|
||||
name = 'replicate:a16z-infra/llama13b-v2-chat',
|
||||
base_provider = 'replicate',
|
||||
best_provider = Vercel)
|
||||
|
||||
llama7b_v2_chat = Model(
|
||||
name = 'replicate:a16z-infra/llama7b-v2-chat',
|
||||
base_provider = 'replicate',
|
||||
best_provider = Vercel)
|
||||
|
||||
|
||||
class ModelUtils:
|
||||
convert: dict[str, Model] = {
|
||||
# GPT-3.5 / GPT-4
|
||||
'gpt-3.5-turbo' : gpt_35_turbo,
|
||||
'gpt-4' : gpt_4,
|
||||
|
||||
# Bard
|
||||
'palm2' : palm,
|
||||
'palm' : palm,
|
||||
'google' : palm,
|
||||
'google-bard' : palm,
|
||||
'google-palm' : palm,
|
||||
'bard' : palm,
|
||||
|
||||
# H2o
|
||||
'falcon-40b' : falcon_40b,
|
||||
'falcon-7b' : falcon_7b,
|
||||
'llama-13b' : llama_13b,
|
||||
|
||||
# Vercel
|
||||
'claude-instant-v1' : claude_instant_v1,
|
||||
'claude-v1' : claude_v1,
|
||||
'claude-v2' : claude_v2,
|
||||
'command-nightly' : command_nightly,
|
||||
'gpt-neox-20b' : gpt_neox_20b,
|
||||
'santacoder' : santacoder,
|
||||
'bloom' : bloom,
|
||||
'flan-t5-xxl' : flan_t5_xxl,
|
||||
'code-davinci-002' : code_davinci_002,
|
||||
'gpt-3.5-turbo-16k' : gpt_35_turbo_16k,
|
||||
'gpt-4-0613' : gpt_4_0613,
|
||||
'text-ada-001' : text_ada_001,
|
||||
'text-babbage-001' : text_babbage_001,
|
||||
'text-curie-001' : text_curie_001,
|
||||
'text-davinci-002' : text_davinci_002,
|
||||
'text-davinci-003' : text_davinci_003,
|
||||
'llama13b-v2-chat' : llama13b_v2_chat,
|
||||
'llama7b-v2-chat' : llama7b_v2_chat,
|
||||
|
||||
'oasst-sft-1-pythia-12b' : oasst_sft_1_pythia_12b,
|
||||
'oasst-sft-4-pythia-12b-epoch-3.5' : oasst_sft_4_pythia_12b_epoch_35,
|
||||
'command-light-nightly' : command_light_nightly,
|
||||
'gpt-3.5-turbo-16k-0613' : gpt_35_turbo_16k_0613,
|
||||
}
|
@ -12,9 +12,10 @@ CreateResult = Generator[str, None, None]
|
||||
__all__ = [
|
||||
'Any',
|
||||
'AsyncGenerator',
|
||||
'CreateResult',
|
||||
'Generator',
|
||||
'SHA256',
|
||||
'Tuple',
|
||||
'TypedDict',
|
||||
'SHA256',
|
||||
'CreateResult',
|
||||
'Union',
|
||||
]
|
||||
|
@ -3,13 +3,13 @@ from pathlib import Path
|
||||
|
||||
def main():
|
||||
content = create_content()
|
||||
with open("g4f/provider/__init__.py", "w", encoding="utf-8") as f:
|
||||
with open("g4f/Provider/__init__.py", "w", encoding="utf-8") as f:
|
||||
f.write(content)
|
||||
|
||||
|
||||
def create_content():
|
||||
path = Path()
|
||||
paths = path.glob("g4f/provider/*.py")
|
||||
paths = path.glob("g4f/Provider/*.py")
|
||||
paths = [p for p in paths if p.name not in ["__init__.py", "base_provider.py"]]
|
||||
classnames = [p.stem for p in paths]
|
||||
|
||||
|
@ -81,7 +81,7 @@ def print_providers():
|
||||
netloc = urlparse(_provider.url).netloc
|
||||
website = f"[{netloc}]({_provider.url})"
|
||||
|
||||
provider_name = f"g4f.provider.{_provider.__name__}"
|
||||
provider_name = f"g4f.Provider.{_provider.__name__}"
|
||||
|
||||
has_gpt_35 = "✔️" if _provider.supports_gpt_35_turbo else "❌"
|
||||
has_gpt_4 = "✔️" if _provider.supports_gpt_4 else "❌"
|
||||
@ -128,7 +128,7 @@ def print_models():
|
||||
|
||||
name = re.split(r":|/", model.name)[-1]
|
||||
base_provider = base_provider_names[model.base_provider]
|
||||
provider_name = f"g4f.provider.{model.best_provider.__name__}"
|
||||
provider_name = f"g4f.Provider.{model.best_provider.__name__}"
|
||||
provider_url = provider_urls[model.best_provider.__name__]
|
||||
netloc = urlparse(provider_url).netloc
|
||||
website = f"[{netloc}]({provider_url})"
|
||||
|
Loading…
Reference in New Issue
Block a user