Add local models to gui, Fix You Provider, add AsyncClient

This commit is contained in:
Heiner Lohaus 2024-04-07 10:36:13 +02:00
parent 674ba8f2c5
commit b35dfcd1b0
37 changed files with 686 additions and 565 deletions

View File

@ -18,7 +18,7 @@ class Aura(AsyncGeneratorProvider):
messages: Messages, messages: Messages,
proxy: str = None, proxy: str = None,
temperature: float = 0.5, temperature: float = 0.5,
max_tokens: int = 8192. max_tokens: int = 8192,
webdriver: WebDriver = None, webdriver: WebDriver = None,
**kwargs **kwargs
) -> AsyncResult: ) -> AsyncResult:

View File

@ -1,14 +1,13 @@
from __future__ import annotations from __future__ import annotations
import json
import requests import requests
from ..typing import AsyncResult, Messages from ..typing import AsyncResult, Messages
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin from .needs_auth.Openai import Openai
from ..requests import StreamSession, raise_for_status
class DeepInfra(AsyncGeneratorProvider, ProviderModelMixin): class DeepInfra(Openai):
url = "https://deepinfra.com" url = "https://deepinfra.com"
working = True working = True
needs_auth = False
supports_stream = True supports_stream = True
supports_message_history = True supports_message_history = True
default_model = 'meta-llama/Llama-2-70b-chat-hf' default_model = 'meta-llama/Llama-2-70b-chat-hf'
@ -18,25 +17,25 @@ class DeepInfra(AsyncGeneratorProvider, ProviderModelMixin):
if not cls.models: if not cls.models:
url = 'https://api.deepinfra.com/models/featured' url = 'https://api.deepinfra.com/models/featured'
models = requests.get(url).json() models = requests.get(url).json()
cls.models = [model['model_name'] for model in models] cls.models = [model['model_name'] for model in models if model["type"] == "text-generation"]
return cls.models return cls.models
@classmethod @classmethod
async def create_async_generator( def create_async_generator(
cls, cls,
model: str, model: str,
messages: Messages, messages: Messages,
stream: bool, stream: bool,
proxy: str = None, api_base: str = "https://api.deepinfra.com/v1/openai",
timeout: int = 120, temperature: float = 0.7,
auth: str = None, max_tokens: int = 1028,
**kwargs **kwargs
) -> AsyncResult: ) -> AsyncResult:
headers = { headers = {
'Accept-Encoding': 'gzip, deflate, br', 'Accept-Encoding': 'gzip, deflate, br',
'Accept-Language': 'en-US', 'Accept-Language': 'en-US',
'Connection': 'keep-alive', 'Connection': 'keep-alive',
'Content-Type': 'application/json', 'Content-Type': None,
'Origin': 'https://deepinfra.com', 'Origin': 'https://deepinfra.com',
'Referer': 'https://deepinfra.com/', 'Referer': 'https://deepinfra.com/',
'Sec-Fetch-Dest': 'empty', 'Sec-Fetch-Dest': 'empty',
@ -44,46 +43,17 @@ class DeepInfra(AsyncGeneratorProvider, ProviderModelMixin):
'Sec-Fetch-Site': 'same-site', 'Sec-Fetch-Site': 'same-site',
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36',
'X-Deepinfra-Source': 'web-embed', 'X-Deepinfra-Source': 'web-embed',
'accept': 'text/event-stream', 'Accept': None,
'sec-ch-ua': '"Google Chrome";v="119", "Chromium";v="119", "Not?A_Brand";v="24"', 'sec-ch-ua': '"Google Chrome";v="119", "Chromium";v="119", "Not?A_Brand";v="24"',
'sec-ch-ua-mobile': '?0', 'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"macOS"', 'sec-ch-ua-platform': '"macOS"',
} }
if auth: return super().create_async_generator(
headers['Authorization'] = f"bearer {auth}" model, messages,
stream=stream,
async with StreamSession(headers=headers, api_base=api_base,
timeout=timeout, temperature=temperature,
proxies={"https": proxy}, max_tokens=max_tokens,
impersonate="chrome110" headers=headers,
) as session: **kwargs
json_data = { )
'model' : cls.get_model(model),
'messages': messages,
'temperature': kwargs.get("temperature", 0.7),
'max_tokens': kwargs.get("max_tokens", 512),
'stop': kwargs.get("stop", []),
'stream' : True
}
async with session.post('https://api.deepinfra.com/v1/openai/chat/completions',
json=json_data) as response:
await raise_for_status(response)
first = True
async for line in response.iter_lines():
if not line.startswith(b"data: "):
continue
try:
json_line = json.loads(line[6:])
choices = json_line.get("choices", [{}])
finish_reason = choices[0].get("finish_reason")
if finish_reason:
break
token = choices[0].get("delta", {}).get("content")
if token:
if first:
token = token.lstrip()
if token:
first = False
yield token
except Exception:
raise RuntimeError(f"Response: {line}")

View File

@ -76,7 +76,7 @@ class GeminiPro(AsyncGeneratorProvider, ProviderModelMixin):
if not response.ok: if not response.ok:
data = await response.json() data = await response.json()
data = data[0] if isinstance(data, list) else data data = data[0] if isinstance(data, list) else data
raise RuntimeError(f"Response {response.status}: {data["error"]["message"]}") raise RuntimeError(f"Response {response.status}: {data['error']['message']}")
if stream: if stream:
lines = [] lines = []
async for chunk in response.content: async for chunk in response.content:

42
g4f/Provider/Local.py Normal file
View File

@ -0,0 +1,42 @@
from __future__ import annotations
from ..locals.models import get_models
try:
from ..locals.provider import LocalProvider
has_requirements = True
except ModuleNotFoundError:
has_requirements = False
from ..typing import Messages, CreateResult
from ..providers.base_provider import AbstractProvider, ProviderModelMixin
from ..errors import MissingRequirementsError
class Local(AbstractProvider, ProviderModelMixin):
working = True
supports_message_history = True
supports_system_message = True
supports_stream = True
@classmethod
def get_models(cls):
if not cls.models:
cls.models = list(get_models())
cls.default_model = cls.models[0]
return cls.models
@classmethod
def create_completion(
cls,
model: str,
messages: Messages,
stream: bool,
**kwargs
) -> CreateResult:
if not has_requirements:
raise MissingRequirementsError('Install "gpt4all" package | pip install -U g4f[local]')
return LocalProvider.create_completion(
cls.get_model(model),
messages,
stream,
**kwargs
)

View File

@ -17,6 +17,8 @@ from ..image import to_bytes, ImageResponse
from ..requests import StreamSession, raise_for_status from ..requests import StreamSession, raise_for_status
from ..errors import MissingRequirementsError from ..errors import MissingRequirementsError
from .you.har_file import get_dfp_telemetry_id
class You(AsyncGeneratorProvider, ProviderModelMixin): class You(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://you.com" url = "https://you.com"
working = True working = True
@ -45,6 +47,7 @@ class You(AsyncGeneratorProvider, ProviderModelMixin):
cls, cls,
model: str, model: str,
messages: Messages, messages: Messages,
stream: bool = True,
image: ImageType = None, image: ImageType = None,
image_name: str = None, image_name: str = None,
proxy: str = None, proxy: str = None,
@ -56,7 +59,7 @@ class You(AsyncGeneratorProvider, ProviderModelMixin):
if image is not None: if image is not None:
chat_mode = "agent" chat_mode = "agent"
elif not model or model == cls.default_model: elif not model or model == cls.default_model:
chat_mode = "default" ...
elif model.startswith("dall-e"): elif model.startswith("dall-e"):
chat_mode = "create" chat_mode = "create"
else: else:
@ -108,7 +111,7 @@ class You(AsyncGeneratorProvider, ProviderModelMixin):
data = json.loads(line[6:]) data = json.loads(line[6:])
if event == "youChatToken" and event in data: if event == "youChatToken" and event in data:
yield data[event] yield data[event]
elif event == "youChatUpdate" and "t" in data: elif event == "youChatUpdate" and "t" in data and data["t"] is not None:
match = re.search(r"!\[fig\]\((.+?)\)", data["t"]) match = re.search(r"!\[fig\]\((.+?)\)", data["t"])
if match: if match:
yield ImageResponse(match.group(1), messages[-1]["content"]) yield ImageResponse(match.group(1), messages[-1]["content"])
@ -177,6 +180,7 @@ class You(AsyncGeneratorProvider, ProviderModelMixin):
"X-SDK-Parent-Host": cls.url "X-SDK-Parent-Host": cls.url
}, },
json={ json={
"dfp_telemetry_id": await get_dfp_telemetry_id(),
"email": f"{user_uuid}@gmail.com", "email": f"{user_uuid}@gmail.com",
"password": f"{user_uuid}#{user_uuid}", "password": f"{user_uuid}#{user_uuid}",
"session_duration_minutes": 129600 "session_duration_minutes": 129600

View File

@ -33,6 +33,7 @@ from .HuggingFace import HuggingFace
from .Koala import Koala from .Koala import Koala
from .Liaobots import Liaobots from .Liaobots import Liaobots
from .Llama2 import Llama2 from .Llama2 import Llama2
from .Local import Local
from .PerplexityLabs import PerplexityLabs from .PerplexityLabs import PerplexityLabs
from .Pi import Pi from .Pi import Pi
from .Vercel import Vercel from .Vercel import Vercel

View File

@ -8,7 +8,6 @@ from ...typing import AsyncResult, Messages
from ..base_provider import AsyncGeneratorProvider from ..base_provider import AsyncGeneratorProvider
from ..helper import format_prompt, get_cookies from ..helper import format_prompt, get_cookies
class OpenAssistant(AsyncGeneratorProvider): class OpenAssistant(AsyncGeneratorProvider):
url = "https://open-assistant.io/chat" url = "https://open-assistant.io/chat"
needs_auth = True needs_auth = True

View File

@ -32,3 +32,4 @@ from .GeekGpt import GeekGpt
from .GPTalk import GPTalk from .GPTalk import GPTalk
from .Hashnode import Hashnode from .Hashnode import Hashnode
from .Ylokh import Ylokh from .Ylokh import Ylokh
from .OpenAssistant import OpenAssistant

View File

@ -19,7 +19,7 @@ except ImportError:
from ...typing import Messages, Cookies, ImageType, AsyncResult from ...typing import Messages, Cookies, ImageType, AsyncResult
from ..base_provider import AsyncGeneratorProvider from ..base_provider import AsyncGeneratorProvider
from ..helper import format_prompt, get_cookies from ..helper import format_prompt, get_cookies
from requests.raise_for_status import raise_for_status from ...requests.raise_for_status import raise_for_status
from ...errors import MissingAuthError, MissingRequirementsError from ...errors import MissingAuthError, MissingRequirementsError
from ...image import to_bytes, ImageResponse from ...image import to_bytes, ImageResponse
from ...webdriver import get_browser, get_driver_cookies from ...webdriver import get_browser, get_driver_cookies

View File

@ -3,10 +3,10 @@ from __future__ import annotations
import json import json
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin, FinishReason from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin, FinishReason
from ...typing import AsyncResult, Messages from ...typing import Union, Optional, AsyncResult, Messages
from ...requests.raise_for_status import raise_for_status from ...requests.raise_for_status import raise_for_status
from ...requests import StreamSession from ...requests import StreamSession
from ...errors import MissingAuthError from ...errors import MissingAuthError, ResponseError
class Openai(AsyncGeneratorProvider, ProviderModelMixin): class Openai(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://openai.com" url = "https://openai.com"
@ -27,48 +27,82 @@ class Openai(AsyncGeneratorProvider, ProviderModelMixin):
temperature: float = None, temperature: float = None,
max_tokens: int = None, max_tokens: int = None,
top_p: float = None, top_p: float = None,
stop: str = None, stop: Union[str, list[str]] = None,
stream: bool = False, stream: bool = False,
headers: dict = None,
extra_data: dict = {},
**kwargs **kwargs
) -> AsyncResult: ) -> AsyncResult:
if api_key is None: if cls.needs_auth and api_key is None:
raise MissingAuthError('Add a "api_key"') raise MissingAuthError('Add a "api_key"')
async with StreamSession( async with StreamSession(
proxies={"all": proxy}, proxies={"all": proxy},
headers=cls.get_headers(api_key), headers=cls.get_headers(stream, api_key, headers),
timeout=timeout timeout=timeout
) as session: ) as session:
data = { data = filter_none(
"messages": messages, messages=messages,
"model": cls.get_model(model), model=cls.get_model(model),
"temperature": temperature, temperature=temperature,
"max_tokens": max_tokens, max_tokens=max_tokens,
"top_p": top_p, top_p=top_p,
"stop": stop, stop=stop,
"stream": stream, stream=stream,
} **extra_data
)
async with session.post(f"{api_base.rstrip('/')}/chat/completions", json=data) as response: async with session.post(f"{api_base.rstrip('/')}/chat/completions", json=data) as response:
await raise_for_status(response) await raise_for_status(response)
async for line in response.iter_lines(): if not stream:
if line.startswith(b"data: ") or not stream: data = await response.json()
async for chunk in cls.read_line(line[6:] if stream else line, stream): choice = data["choices"][0]
yield chunk if "content" in choice["message"]:
yield choice["message"]["content"].strip()
finish = cls.read_finish_reason(choice)
if finish is not None:
yield finish
else:
first = True
async for line in response.iter_lines():
if line.startswith(b"data: "):
chunk = line[6:]
if chunk == b"[DONE]":
break
data = json.loads(chunk)
if "error_message" in data:
raise ResponseError(data["error_message"])
choice = data["choices"][0]
if "content" in choice["delta"] and choice["delta"]["content"]:
delta = choice["delta"]["content"]
if first:
delta = delta.lstrip()
if delta:
first = False
yield delta
finish = cls.read_finish_reason(choice)
if finish is not None:
yield finish
@staticmethod @staticmethod
async def read_line(line: str, stream: bool): def read_finish_reason(choice: dict) -> Optional[FinishReason]:
if line == b"[DONE]":
return
choice = json.loads(line)["choices"][0]
if stream and "content" in choice["delta"] and choice["delta"]["content"]:
yield choice["delta"]["content"]
elif not stream and "content" in choice["message"]:
yield choice["message"]["content"]
if "finish_reason" in choice and choice["finish_reason"] is not None: if "finish_reason" in choice and choice["finish_reason"] is not None:
yield FinishReason(choice["finish_reason"]) return FinishReason(choice["finish_reason"])
@staticmethod @classmethod
def get_headers(api_key: str) -> dict: def get_headers(cls, stream: bool, api_key: str = None, headers: dict = None) -> dict:
return { return {
"Authorization": f"Bearer {api_key}", "Accept": "text/event-stream" if stream else "application/json",
"Content-Type": "application/json", "Content-Type": "application/json",
**(
{"Authorization": f"Bearer {api_key}"}
if cls.needs_auth and api_key is not None
else {}
),
**({} if headers is None else headers)
} }
def filter_none(**kwargs) -> dict:
return {
key: value
for key, value in kwargs.items()
if value is not None
}

View File

@ -1,10 +1,7 @@
from __future__ import annotations from __future__ import annotations
import requests from ...typing import CreateResult, Messages
from .Openai import Openai
from ...typing import Any, CreateResult, Messages
from ..base_provider import AbstractProvider, ProviderModelMixin
from ...errors import MissingAuthError
models = { models = {
"theb-ai": "TheB.AI", "theb-ai": "TheB.AI",
@ -30,7 +27,7 @@ models = {
"qwen-7b-chat": "Qwen 7B" "qwen-7b-chat": "Qwen 7B"
} }
class ThebApi(AbstractProvider, ProviderModelMixin): class ThebApi(Openai):
url = "https://theb.ai" url = "https://theb.ai"
working = True working = True
needs_auth = True needs_auth = True
@ -38,44 +35,26 @@ class ThebApi(AbstractProvider, ProviderModelMixin):
models = list(models) models = list(models)
@classmethod @classmethod
def create_completion( def create_async_generator(
cls, cls,
model: str, model: str,
messages: Messages, messages: Messages,
stream: bool, api_base: str = "https://api.theb.ai/v1",
auth: str = None, temperature: float = 1,
proxy: str = None, top_p: float = 1,
**kwargs **kwargs
) -> CreateResult: ) -> CreateResult:
if not auth: if "auth" in kwargs:
raise MissingAuthError("Missing auth") kwargs["api_key"] = kwargs["auth"]
headers = { system_message = "\n".join([message["content"] for message in messages if message["role"] == "system"])
'accept': 'application/json', if not system_message:
'authorization': f'Bearer {auth}', system_message = "You are ChatGPT, a large language model trained by OpenAI, based on the GPT-3.5 architecture."
'content-type': 'application/json', messages = [message for message in messages if message["role"] != "system"]
} data = {
# response = requests.get("https://api.baizhi.ai/v1/models", headers=headers).json()["data"]
# models = dict([(m["id"], m["name"]) for m in response])
# print(json.dumps(models, indent=4))
data: dict[str, Any] = {
"model": cls.get_model(model),
"messages": messages,
"stream": False,
"model_params": { "model_params": {
"system_prompt": kwargs.get("system_message", "You are ChatGPT, a large language model trained by OpenAI, based on the GPT-3.5 architecture."), "system_prompt": system_message,
"temperature": 1, "temperature": temperature,
"top_p": 1, "top_p": top_p,
**kwargs
} }
} }
response = requests.post( return super().create_async_generator(model, messages, api_base=api_base, extra_data=data, **kwargs)
"https://api.theb.ai/v1/chat/completions",
headers=headers,
json=data,
proxies={"https": proxy}
)
try:
response.raise_for_status()
yield response.json()["choices"][0]["message"]["content"]
except:
raise RuntimeError(f"Response: {next(response.iter_lines()).decode()}")

View File

@ -3,7 +3,6 @@ from .Raycast import Raycast
from .Theb import Theb from .Theb import Theb
from .ThebApi import ThebApi from .ThebApi import ThebApi
from .OpenaiChat import OpenaiChat from .OpenaiChat import OpenaiChat
from .OpenAssistant import OpenAssistant
from .Poe import Poe from .Poe import Poe
from .Openai import Openai from .Openai import Openai
from .Groq import Groq from .Groq import Groq

View File

View File

@ -0,0 +1,70 @@
import json
import os
import random
import uuid
from ...requests import StreamSession, raise_for_status
class NoValidHarFileError(Exception):
...
class arkReq:
def __init__(self, arkURL, arkHeaders, arkBody, arkCookies, userAgent):
self.arkURL = arkURL
self.arkHeaders = arkHeaders
self.arkBody = arkBody
self.arkCookies = arkCookies
self.userAgent = userAgent
arkPreURL = "https://telemetry.stytch.com/submit"
chatArks: list = None
def readHAR():
dirPath = "./"
harPath = []
chatArks = []
for root, dirs, files in os.walk(dirPath):
for file in files:
if file.endswith(".har"):
harPath.append(os.path.join(root, file))
if harPath:
break
if not harPath:
raise NoValidHarFileError("No .har file found")
for path in harPath:
with open(path, 'rb') as file:
try:
harFile = json.load(file)
except json.JSONDecodeError:
# Error: not a HAR file!
continue
for v in harFile['log']['entries']:
if arkPreURL in v['request']['url']:
chatArks.append(parseHAREntry(v))
if not chatArks:
raise NoValidHarFileError("No telemetry in .har files found")
return chatArks
def parseHAREntry(entry) -> arkReq:
tmpArk = arkReq(
arkURL=entry['request']['url'],
arkHeaders={h['name'].lower(): h['value'] for h in entry['request']['headers'] if h['name'].lower() not in ['content-length', 'cookie'] and not h['name'].startswith(':')},
arkBody=entry['request']['postData']['text'],
arkCookies={c['name']: c['value'] for c in entry['request']['cookies']},
userAgent=""
)
tmpArk.userAgent = tmpArk.arkHeaders.get('user-agent', '')
return tmpArk
async def sendRequest(tmpArk: arkReq, proxy: str = None):
async with StreamSession(headers=tmpArk.arkHeaders, cookies=tmpArk.arkCookies, proxies={"all": proxy}) as session:
async with session.post(tmpArk.arkURL, data=tmpArk.arkBody) as response:
await raise_for_status(response)
return await response.text()
async def get_dfp_telemetry_id(proxy: str = None):
return str(uuid.uuid4())
global chatArks
if chatArks is None:
chatArks = readHAR()
return await sendRequest(random.choice(chatArks), proxy)

View File

@ -2,95 +2,14 @@ from __future__ import annotations
import os import os
from .errors import * from . import debug, version
from .models import Model, ModelUtils from .models import Model
from .Provider import AsyncGeneratorProvider, ProviderUtils from .typing import Messages, CreateResult, AsyncResult, Union
from .typing import Messages, CreateResult, AsyncResult, Union from .errors import StreamNotSupportedError, ModelNotAllowedError
from .cookies import get_cookies, set_cookies from .cookies import get_cookies, set_cookies
from . import debug, version from .providers.types import ProviderType
from .providers.types import BaseRetryProvider, ProviderType from .providers.base_provider import AsyncGeneratorProvider
from .providers.base_provider import ProviderModelMixin from .client.service import get_model_and_provider, get_last_provider
from .providers.retry_provider import IterProvider
def get_model_and_provider(model : Union[Model, str],
provider : Union[ProviderType, str, None],
stream : bool,
ignored : list[str] = None,
ignore_working: bool = False,
ignore_stream: bool = False,
**kwargs) -> tuple[str, ProviderType]:
"""
Retrieves the model and provider based on input parameters.
Args:
model (Union[Model, str]): The model to use, either as an object or a string identifier.
provider (Union[ProviderType, str, None]): The provider to use, either as an object, a string identifier, or None.
stream (bool): Indicates if the operation should be performed as a stream.
ignored (list[str], optional): List of provider names to be ignored.
ignore_working (bool, optional): If True, ignores the working status of the provider.
ignore_stream (bool, optional): If True, ignores the streaming capability of the provider.
Returns:
tuple[str, ProviderType]: A tuple containing the model name and the provider type.
Raises:
ProviderNotFoundError: If the provider is not found.
ModelNotFoundError: If the model is not found.
ProviderNotWorkingError: If the provider is not working.
StreamNotSupportedError: If streaming is not supported by the provider.
"""
if debug.version_check:
debug.version_check = False
version.utils.check_version()
if isinstance(provider, str):
if " " in provider:
provider_list = [ProviderUtils.convert[p] for p in provider.split() if p in ProviderUtils.convert]
if not provider_list:
raise ProviderNotFoundError(f'Providers not found: {provider}')
provider = IterProvider(provider_list)
elif provider in ProviderUtils.convert:
provider = ProviderUtils.convert[provider]
elif provider:
raise ProviderNotFoundError(f'Provider not found: {provider}')
if isinstance(model, str):
if model in ModelUtils.convert:
model = ModelUtils.convert[model]
if not provider:
if isinstance(model, str):
raise ModelNotFoundError(f'Model not found: {model}')
provider = model.best_provider
if not provider:
raise ProviderNotFoundError(f'No provider found for model: {model}')
if isinstance(model, Model):
model = model.name
if not ignore_working and not provider.working:
raise ProviderNotWorkingError(f'{provider.__name__} is not working')
if not ignore_working and isinstance(provider, BaseRetryProvider):
provider.providers = [p for p in provider.providers if p.working]
if ignored and isinstance(provider, BaseRetryProvider):
provider.providers = [p for p in provider.providers if p.__name__ not in ignored]
if not ignore_stream and not provider.supports_stream and stream:
raise StreamNotSupportedError(f'{provider.__name__} does not support "stream" argument')
if debug.logging:
if model:
print(f'Using {provider.__name__} provider and {model} model')
else:
print(f'Using {provider.__name__} provider')
debug.last_provider = provider
debug.last_model = model
return model, provider
class ChatCompletion: class ChatCompletion:
@staticmethod @staticmethod
@ -134,7 +53,7 @@ class ChatCompletion:
ignore_stream or kwargs.get("ignore_stream_and_auth") ignore_stream or kwargs.get("ignore_stream_and_auth")
) )
if auth: if auth is not None:
kwargs['auth'] = auth kwargs['auth'] = auth
if "proxy" not in kwargs: if "proxy" not in kwargs:
@ -154,6 +73,7 @@ class ChatCompletion:
provider : Union[ProviderType, str, None] = None, provider : Union[ProviderType, str, None] = None,
stream : bool = False, stream : bool = False,
ignored : list[str] = None, ignored : list[str] = None,
ignore_working: bool = False,
patch_provider: callable = None, patch_provider: callable = None,
**kwargs) -> Union[AsyncResult, str]: **kwargs) -> Union[AsyncResult, str]:
""" """
@ -174,7 +94,7 @@ class ChatCompletion:
Raises: Raises:
StreamNotSupportedError: If streaming is requested but not supported by the provider. StreamNotSupportedError: If streaming is requested but not supported by the provider.
""" """
model, provider = get_model_and_provider(model, provider, False, ignored) model, provider = get_model_and_provider(model, provider, False, ignored, ignore_working)
if stream: if stream:
if isinstance(provider, type) and issubclass(provider, AsyncGeneratorProvider): if isinstance(provider, type) and issubclass(provider, AsyncGeneratorProvider):
@ -226,25 +146,3 @@ class Completion:
result = provider.create_completion(model, [{"role": "user", "content": prompt}], stream, **kwargs) result = provider.create_completion(model, [{"role": "user", "content": prompt}], stream, **kwargs)
return result if stream else ''.join(result) return result if stream else ''.join(result)
def get_last_provider(as_dict: bool = False) -> Union[ProviderType, dict[str, str]]:
"""
Retrieves the last used provider.
Args:
as_dict (bool, optional): If True, returns the provider information as a dictionary.
Returns:
Union[ProviderType, dict[str, str]]: The last used provider, either as an object or a dictionary.
"""
last = debug.last_provider
if isinstance(last, BaseRetryProvider):
last = last.last_provider
if last and as_dict:
return {
"name": last.__name__,
"url": last.url,
"model": debug.last_model,
"models": last.models if isinstance(last, ProviderModelMixin) else []
}
return last

View File

@ -3,10 +3,13 @@ import json
import uvicorn import uvicorn
import nest_asyncio import nest_asyncio
from fastapi import FastAPI, Response, Request from fastapi import FastAPI, Response, Request
from fastapi.responses import StreamingResponse, RedirectResponse, HTMLResponse, JSONResponse from fastapi.responses import StreamingResponse, RedirectResponse, HTMLResponse, JSONResponse
from pydantic import BaseModel from fastapi.exceptions import RequestValidationError
from typing import List, Union from starlette.status import HTTP_422_UNPROCESSABLE_ENTITY
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel
from typing import List, Union
import g4f import g4f
import g4f.debug import g4f.debug
@ -39,6 +42,25 @@ class Api:
self.app = FastAPI() self.app = FastAPI()
self.routes() self.routes()
self.register_validation_exception_handler()
def register_validation_exception_handler(self):
@self.app.exception_handler(RequestValidationError)
async def validation_exception_handler(request: Request, exc: RequestValidationError):
details = exc.errors()
modified_details = []
for error in details:
modified_details.append(
{
"loc": error["loc"],
"message": error["msg"],
"type": error["type"],
}
)
return JSONResponse(
status_code=HTTP_422_UNPROCESSABLE_ENTITY,
content=jsonable_encoder({"detail": modified_details}),
)
def routes(self): def routes(self):
@self.app.get("/") @self.app.get("/")

View File

@ -0,0 +1,3 @@
from .stubs import ChatCompletion, ChatCompletionChunk, ImagesResponse
from .client import Client
from .async_client import AsyncClient

View File

@ -1,20 +1,21 @@
from __future__ import annotations from __future__ import annotations
import re
import os
import time import time
import random import random
import string import string
from .types import Client as BaseClient from .types import Client as BaseClient
from .types import BaseProvider, ProviderType, FinishReason from .types import ProviderType, FinishReason
from .stubs import ChatCompletion, ChatCompletionChunk, Image, ImagesResponse from .stubs import ChatCompletion, ChatCompletionChunk, ImagesResponse, Image
from ..typing import Union, Iterator, Messages, ImageType, AsyncIerator from .types import AsyncIterResponse, ImageProvider
from .image_models import ImageModels
from .helper import filter_json, find_stop, filter_none, cast_iter_async
from .service import get_last_provider, get_model_and_provider
from ..typing import Union, Iterator, Messages, AsyncIterator, ImageType
from ..errors import NoImageResponseError
from ..image import ImageResponse as ImageProviderResponse from ..image import ImageResponse as ImageProviderResponse
from ..errors import NoImageResponseError, RateLimitError, MissingAuthError from ..providers.base_provider import AsyncGeneratorProvider
from .. import get_model_and_provider, get_last_provider
from .helper import read_json, find_stop, filter_none
ä
async def iter_response( async def iter_response(
response: AsyncIterator[str], response: AsyncIterator[str],
stream: bool, stream: bool,
@ -47,10 +48,10 @@ async def iter_response(
else: else:
if response_format is not None and "type" in response_format: if response_format is not None and "type" in response_format:
if response_format["type"] == "json_object": if response_format["type"] == "json_object":
content = read_json(content) content = filter_json(content)
yield ChatCompletion(content, finish_reason, completion_id, int(time.time())) yield ChatCompletion(content, finish_reason, completion_id, int(time.time()))
async def iter_append_model_and_provider(response: AsyncIterResponse) -> IterResponse: async def iter_append_model_and_provider(response: AsyncIterResponse) -> AsyncIterResponse:
last_provider = None last_provider = None
async for chunk in response: async for chunk in response:
last_provider = get_last_provider(True) if last_provider is None else last_provider last_provider = get_last_provider(True) if last_provider is None else last_provider
@ -58,51 +59,50 @@ async def iter_append_model_and_provider(response: AsyncIterResponse) -> IterRes
chunk.provider = last_provider.get("name") chunk.provider = last_provider.get("name")
yield chunk yield chunk
class Client(BaseClient): class AsyncClient(BaseClient):
def __init__( def __init__(
self, self,
provider: ProviderType = None,
image_provider: ImageProvider = None,
**kwargs **kwargs
): ):
super().__init__(**kwargs) super().__init__(**kwargs)
self.chat: Chat = Chat(self, provider) self.chat: Chat = Chat(self, provider)
self.images: Images = Images(self, image_provider) self.images: Images = Images(self, image_provider)
async def cast_iter_async(iter):
for chunk in iter:
yield chunk
def create_response( def create_response(
messages: Messages, messages: Messages,
model: str, model: str,
provider: ProviderType = None, provider: ProviderType = None,
stream: bool = False, stream: bool = False,
response_format: dict = None, proxy: str = None,
max_tokens: int = None, max_tokens: int = None,
stop: Union[list[str], str] = None, stop: list[str] = None,
api_key: str = None, api_key: str = None,
**kwargs **kwargs
): ):
if hasattr(provider, "create_async_generator): has_asnyc = isinstance(provider, type) and issubclass(provider, AsyncGeneratorProvider)
if has_asnyc:
create = provider.create_async_generator create = provider.create_async_generator
else: else:
create = provider.create_completion create = provider.create_completion
response = create( response = create(
model, messages, stream, model, messages, stream,
**filter_none( **filter_none(
proxy=self.client.get_proxy(), proxy=proxy,
max_tokens=max_tokens, max_tokens=max_tokens,
stop=stop, stop=stop,
api_key=self.client.api_key if api_key is None else api_key api_key=api_key
), ),
**kwargs **kwargs
) )
if not hasattr(provider, "create_async_generator") if not has_asnyc:
response = cast_iter_async(response) response = cast_iter_async(response)
return response return response
class Completions(): class Completions():
def __init__(self, client: Client, provider: ProviderType = None): def __init__(self, client: AsyncClient, provider: ProviderType = None):
self.client: Client = client self.client: AsyncClient = client
self.provider: ProviderType = provider self.provider: ProviderType = provider
def create( def create(
@ -111,6 +111,10 @@ class Completions():
model: str, model: str,
provider: ProviderType = None, provider: ProviderType = None,
stream: bool = False, stream: bool = False,
proxy: str = None,
max_tokens: int = None,
stop: Union[list[str], str] = None,
api_key: str = None,
response_format: dict = None, response_format: dict = None,
ignored : list[str] = None, ignored : list[str] = None,
ignore_working: bool = False, ignore_working: bool = False,
@ -123,11 +127,18 @@ class Completions():
stream, stream,
ignored, ignored,
ignore_working, ignore_working,
ignore_stream, ignore_stream
**kwargs
) )
stop = [stop] if isinstance(stop, str) else stop stop = [stop] if isinstance(stop, str) else stop
response = create_response(messages, model, provider, stream, **kwargs) response = create_response(
messages, model,
provider, stream,
proxy=self.client.get_proxy() if proxy is None else proxy,
max_tokens=max_tokens,
stop=stop,
api_key=self.client.api_key if api_key is None else api_key
**kwargs
)
response = iter_response(response, stream, response_format, max_tokens, stop) response = iter_response(response, stream, response_format, max_tokens, stop)
response = iter_append_model_and_provider(response) response = iter_append_model_and_provider(response)
return response if stream else anext(response) return response if stream else anext(response)
@ -135,44 +146,40 @@ class Completions():
class Chat(): class Chat():
completions: Completions completions: Completions
def __init__(self, client: Client, provider: ProviderType = None): def __init__(self, client: AsyncClient, provider: ProviderType = None):
self.completions = Completions(client, provider) self.completions = Completions(client, provider)
async def iter_image_response(response: Iterator) -> Union[ImagesResponse, None]: async def iter_image_response(response: Iterator) -> Union[ImagesResponse, None]:
async for chunk in list(response): async for chunk in response:
if isinstance(chunk, ImageProviderResponse): if isinstance(chunk, ImageProviderResponse):
return ImagesResponse([Image(image) for image in chunk.get_list()]) return ImagesResponse([Image(image) for image in chunk.get_list()])
def create_image(client: Client, provider: ProviderType, prompt: str, model: str = "", **kwargs) -> AsyncIterator: def create_image(client: AsyncClient, provider: ProviderType, prompt: str, model: str = "", **kwargs) -> AsyncIterator:
prompt = f"create a image with: {prompt}" prompt = f"create a image with: {prompt}"
if provider.__name__ == "You":
kwargs["chat_mode"] = "create"
return provider.create_async_generator( return provider.create_async_generator(
model, model,
[{"role": "user", "content": prompt}], [{"role": "user", "content": prompt}],
True, stream=True,
proxy=client.get_proxy(), proxy=client.get_proxy(),
**kwargs **kwargs
) )
class Images(): class Images():
def __init__(self, client: Client, provider: ImageProvider = None): def __init__(self, client: AsyncClient, provider: ImageProvider = None):
self.client: Client = client self.client: AsyncClient = client
self.provider: ImageProvider = provider self.provider: ImageProvider = provider
self.models: ImageModels = ImageModels(client) self.models: ImageModels = ImageModels(client)
async def generate(self, prompt, model: str = None, **kwargs) -> ImagesResponse: async def generate(self, prompt, model: str = "", **kwargs) -> ImagesResponse:
provider = self.models.get(model, self.provider) provider = self.models.get(model, self.provider)
if isinstance(provider, type) and issubclass(provider, BaseProvider): if isinstance(provider, type) and issubclass(provider, AsyncGeneratorProvider):
response = create_image(self.client, provider, prompt, **kwargs) response = create_image(self.client, provider, prompt, **kwargs)
else: else:
try: response = await provider.create_async(prompt)
response = list(provider.create(prompt)) return ImagesResponse([Image(image) for image in response.get_list()])
except (RateLimitError, MissingAuthError) as e: image = await iter_image_response(response)
# Fallback for default provider
if self.provider is None:
response = create_image(self.client, self.models.you, prompt, model or "dall-e", **kwargs)
else:
raise e
image = iter_image_response(response)
if image is None: if image is None:
raise NoImageResponseError() raise NoImageResponseError()
return image return image
@ -180,7 +187,7 @@ class Images():
async def create_variation(self, image: ImageType, model: str = None, **kwargs): async def create_variation(self, image: ImageType, model: str = None, **kwargs):
provider = self.models.get(model, self.provider) provider = self.models.get(model, self.provider)
result = None result = None
if isinstance(provider, type) and issubclass(provider, BaseProvider): if isinstance(provider, type) and issubclass(provider, AsyncGeneratorProvider):
response = provider.create_async_generator( response = provider.create_async_generator(
"", "",
[{"role": "user", "content": "create a image like this"}], [{"role": "user", "content": "create a image like this"}],
@ -189,10 +196,7 @@ class Images():
proxy=self.client.get_proxy(), proxy=self.client.get_proxy(),
**kwargs **kwargs
) )
async for chunk in response: result = iter_image_response(response)
if isinstance(chunk, ImageProviderResponse):
result = ([chunk.images] if isinstance(chunk.images, str) else chunk.images)
result = ImagesResponse([Image(image)for image in result])
if result is None: if result is None:
raise NoImageResponseError() raise NoImageResponseError()
return result return result

View File

@ -1,40 +1,19 @@
from __future__ import annotations from __future__ import annotations
import re
import os
import time import time
import random import random
import string import string
from ..typing import Union, Iterator, Messages, ImageType
from ..providers.types import BaseProvider, ProviderType, FinishReason
from ..image import ImageResponse as ImageProviderResponse
from ..errors import NoImageResponseError
from .stubs import ChatCompletion, ChatCompletionChunk, Image, ImagesResponse from .stubs import ChatCompletion, ChatCompletionChunk, Image, ImagesResponse
from .typing import Union, Iterator, Messages, ImageType from .image_models import ImageModels
from .providers.types import BaseProvider, ProviderType, FinishReason from .types import IterResponse, ImageProvider
from .image import ImageResponse as ImageProviderResponse from .types import Client as BaseClient
from .errors import NoImageResponseError, RateLimitError, MissingAuthError from .service import get_model_and_provider, get_last_provider
from . import get_model_and_provider, get_last_provider from .helper import find_stop, filter_json, filter_none
from .Provider.BingCreateImages import BingCreateImages
from .Provider.needs_auth import Gemini, OpenaiChat
from .Provider.You import You
ImageProvider = Union[BaseProvider, object]
Proxies = Union[dict, str]
IterResponse = Iterator[Union[ChatCompletion, ChatCompletionChunk]]
def read_json(text: str) -> dict:
"""
Parses JSON code block from a string.
Args:
text (str): A string containing a JSON code block.
Returns:
dict: A dictionary parsed from the JSON code block.
"""
match = re.search(r"```(json|)\n(?P<code>[\S\s]+?)\n```", text)
if match:
return match.group("code")
return text
def iter_response( def iter_response(
response: iter[str], response: iter[str],
@ -53,20 +32,7 @@ def iter_response(
content += str(chunk) content += str(chunk)
if max_tokens is not None and idx + 1 >= max_tokens: if max_tokens is not None and idx + 1 >= max_tokens:
finish_reason = "length" finish_reason = "length"
first = -1 first, content, chunk = find_stop(stop, content, chunk if stream else None)
word = None
if stop is not None:
for word in list(stop):
first = content.find(word)
if first != -1:
content = content[:first]
break
if stream and first != -1:
first = chunk.find(word)
if first != -1:
chunk = chunk[:first]
else:
first = 0
if first != -1: if first != -1:
finish_reason = "stop" finish_reason = "stop"
if stream: if stream:
@ -79,7 +45,7 @@ def iter_response(
else: else:
if response_format is not None and "type" in response_format: if response_format is not None and "type" in response_format:
if response_format["type"] == "json_object": if response_format["type"] == "json_object":
content = read_json(content) content = filter_json(content)
yield ChatCompletion(content, finish_reason, completion_id, int(time.time())) yield ChatCompletion(content, finish_reason, completion_id, int(time.time()))
def iter_append_model_and_provider(response: IterResponse) -> IterResponse: def iter_append_model_and_provider(response: IterResponse) -> IterResponse:
@ -90,37 +56,17 @@ def iter_append_model_and_provider(response: IterResponse) -> IterResponse:
chunk.provider = last_provider.get("name") chunk.provider = last_provider.get("name")
yield chunk yield chunk
class Client(): class Client(BaseClient):
def __init__( def __init__(
self, self,
api_key: str = None,
proxies: Proxies = None,
provider: ProviderType = None, provider: ProviderType = None,
image_provider: ImageProvider = None, image_provider: ImageProvider = None,
**kwargs **kwargs
) -> None: ) -> None:
self.api_key: str = api_key super().__init__(**kwargs)
self.proxies: Proxies = proxies
self.chat: Chat = Chat(self, provider) self.chat: Chat = Chat(self, provider)
self.images: Images = Images(self, image_provider) self.images: Images = Images(self, image_provider)
def get_proxy(self) -> Union[str, None]:
if isinstance(self.proxies, str):
return self.proxies
elif self.proxies is None:
return os.environ.get("G4F_PROXY")
elif "all" in self.proxies:
return self.proxies["all"]
elif "https" in self.proxies:
return self.proxies["https"]
def filter_none(**kwargs):
for key in list(kwargs.keys()):
if kwargs[key] is None:
del kwargs[key]
return kwargs
class Completions(): class Completions():
def __init__(self, client: Client, provider: ProviderType = None): def __init__(self, client: Client, provider: ProviderType = None):
self.client: Client = client self.client: Client = client
@ -132,6 +78,7 @@ class Completions():
model: str, model: str,
provider: ProviderType = None, provider: ProviderType = None,
stream: bool = False, stream: bool = False,
proxy: str = None,
response_format: dict = None, response_format: dict = None,
max_tokens: int = None, max_tokens: int = None,
stop: Union[list[str], str] = None, stop: Union[list[str], str] = None,
@ -148,13 +95,12 @@ class Completions():
ignored, ignored,
ignore_working, ignore_working,
ignore_stream, ignore_stream,
**kwargs
) )
stop = [stop] if isinstance(stop, str) else stop stop = [stop] if isinstance(stop, str) else stop
response = provider.create_completion( response = provider.create_completion(
model, messages, stream, model, messages, stream,
**filter_none( **filter_none(
proxy=self.client.get_proxy(), proxy=self.client.get_proxy() if proxy is None else proxy,
max_tokens=max_tokens, max_tokens=max_tokens,
stop=stop, stop=stop,
api_key=self.client.api_key if api_key is None else api_key api_key=self.client.api_key if api_key is None else api_key
@ -171,18 +117,6 @@ class Chat():
def __init__(self, client: Client, provider: ProviderType = None): def __init__(self, client: Client, provider: ProviderType = None):
self.completions = Completions(client, provider) self.completions = Completions(client, provider)
class ImageModels():
gemini = Gemini
openai = OpenaiChat
you = You
def __init__(self, client: Client) -> None:
self.client = client
self.default = BingCreateImages(proxy=self.client.get_proxy())
def get(self, name: str, default: ImageProvider = None) -> ImageProvider:
return getattr(self, name) if hasattr(self, name) else default or self.default
def iter_image_response(response: Iterator) -> Union[ImagesResponse, None]: def iter_image_response(response: Iterator) -> Union[ImagesResponse, None]:
for chunk in list(response): for chunk in list(response):
if isinstance(chunk, ImageProviderResponse): if isinstance(chunk, ImageProviderResponse):
@ -190,10 +124,12 @@ def iter_image_response(response: Iterator) -> Union[ImagesResponse, None]:
def create_image(client: Client, provider: ProviderType, prompt: str, model: str = "", **kwargs) -> Iterator: def create_image(client: Client, provider: ProviderType, prompt: str, model: str = "", **kwargs) -> Iterator:
prompt = f"create a image with: {prompt}" prompt = f"create a image with: {prompt}"
if provider.__name__ == "You":
kwargs["chat_mode"] = "create"
return provider.create_completion( return provider.create_completion(
model, model,
[{"role": "user", "content": prompt}], [{"role": "user", "content": prompt}],
True, stream=True,
proxy=client.get_proxy(), proxy=client.get_proxy(),
**kwargs **kwargs
) )
@ -209,14 +145,7 @@ class Images():
if isinstance(provider, type) and issubclass(provider, BaseProvider): if isinstance(provider, type) and issubclass(provider, BaseProvider):
response = create_image(self.client, provider, prompt, **kwargs) response = create_image(self.client, provider, prompt, **kwargs)
else: else:
try: response = list(provider.create(prompt))
response = list(provider.create(prompt))
except (RateLimitError, MissingAuthError) as e:
# Fallback for default provider
if self.provider is None:
response = create_image(self.client, self.models.you, prompt, model or "dall-e", **kwargs)
else:
raise e
image = iter_image_response(response) image = iter_image_response(response)
if image is None: if image is None:
raise NoImageResponseError() raise NoImageResponseError()
@ -234,10 +163,7 @@ class Images():
proxy=self.client.get_proxy(), proxy=self.client.get_proxy(),
**kwargs **kwargs
) )
for chunk in response: result = iter_image_response(response)
if isinstance(chunk, ImageProviderResponse):
result = ([chunk.images] if isinstance(chunk.images, str) else chunk.images)
result = ImagesResponse([Image(image)for image in result])
if result is None: if result is None:
raise NoImageResponseError() raise NoImageResponseError()
return result return result

View File

@ -1,6 +1,9 @@
import re from __future__ import annotations
def read_json(text: str) -> dict: import re
from typing import Iterable, AsyncIterator
def filter_json(text: str) -> str:
""" """
Parses JSON code block from a string. Parses JSON code block from a string.
@ -15,7 +18,7 @@ def read_json(text: str) -> dict:
return match.group("code") return match.group("code")
return text return text
def find_stop(stop, content: str, chunk: str): def find_stop(stop, content: str, chunk: str = None):
first = -1 first = -1
word = None word = None
if stop is not None: if stop is not None:
@ -24,10 +27,21 @@ def find_stop(stop, content: str, chunk: str):
if first != -1: if first != -1:
content = content[:first] content = content[:first]
break break
if stream and first != -1: if chunk is not None and first != -1:
first = chunk.find(word) first = chunk.find(word)
if first != -1: if first != -1:
chunk = chunk[:first] chunk = chunk[:first]
else: else:
first = 0 first = 0
return first, content, chunk return first, content, chunk
def filter_none(**kwargs) -> dict:
return {
key: value
for key, value in kwargs.items()
if value is not None
}
async def cast_iter_async(iter: Iterable) -> AsyncIterator:
for chunk in iter:
yield chunk

View File

@ -1,8 +1,10 @@
from .Provider.BingCreateImages import BingCreateImages from __future__ import annotations
from .Provider.needs_auth import Gemini, OpenaiChat
from ..Provider.You import You
from .types import Client from .types import Client, ImageProvider
from ..Provider.BingCreateImages import BingCreateImages
from ..Provider.needs_auth import Gemini, OpenaiChat
from ..Provider.You import You
class ImageModels(): class ImageModels():
gemini = Gemini gemini = Gemini

114
g4f/client/service.py Normal file
View File

@ -0,0 +1,114 @@
from __future__ import annotations
from typing import Union
from .. import debug, version
from ..errors import ProviderNotFoundError, ModelNotFoundError, ProviderNotWorkingError, StreamNotSupportedError
from ..models import Model, ModelUtils
from ..Provider import ProviderUtils
from ..providers.types import BaseRetryProvider, ProviderType
from ..providers.retry_provider import IterProvider
def convert_to_provider(provider: str) -> ProviderType:
if " " in provider:
provider_list = [ProviderUtils.convert[p] for p in provider.split() if p in ProviderUtils.convert]
if not provider_list:
raise ProviderNotFoundError(f'Providers not found: {provider}')
provider = IterProvider(provider_list)
elif provider in ProviderUtils.convert:
provider = ProviderUtils.convert[provider]
elif provider:
raise ProviderNotFoundError(f'Provider not found: {provider}')
return provider
def get_model_and_provider(model : Union[Model, str],
provider : Union[ProviderType, str, None],
stream : bool,
ignored : list[str] = None,
ignore_working: bool = False,
ignore_stream: bool = False) -> tuple[str, ProviderType]:
"""
Retrieves the model and provider based on input parameters.
Args:
model (Union[Model, str]): The model to use, either as an object or a string identifier.
provider (Union[ProviderType, str, None]): The provider to use, either as an object, a string identifier, or None.
stream (bool): Indicates if the operation should be performed as a stream.
ignored (list[str], optional): List of provider names to be ignored.
ignore_working (bool, optional): If True, ignores the working status of the provider.
ignore_stream (bool, optional): If True, ignores the streaming capability of the provider.
Returns:
tuple[str, ProviderType]: A tuple containing the model name and the provider type.
Raises:
ProviderNotFoundError: If the provider is not found.
ModelNotFoundError: If the model is not found.
ProviderNotWorkingError: If the provider is not working.
StreamNotSupportedError: If streaming is not supported by the provider.
"""
if debug.version_check:
debug.version_check = False
version.utils.check_version()
if isinstance(provider, str):
provider = convert_to_provider(provider)
if isinstance(model, str):
if model in ModelUtils.convert:
model = ModelUtils.convert[model]
if not provider:
if isinstance(model, str):
raise ModelNotFoundError(f'Model not found: {model}')
provider = model.best_provider
if not provider:
raise ProviderNotFoundError(f'No provider found for model: {model}')
if isinstance(model, Model):
model = model.name
if not ignore_working and not provider.working:
raise ProviderNotWorkingError(f'{provider.__name__} is not working')
if not ignore_working and isinstance(provider, BaseRetryProvider):
provider.providers = [p for p in provider.providers if p.working]
if ignored and isinstance(provider, BaseRetryProvider):
provider.providers = [p for p in provider.providers if p.__name__ not in ignored]
if not ignore_stream and not provider.supports_stream and stream:
raise StreamNotSupportedError(f'{provider.__name__} does not support "stream" argument')
if debug.logging:
if model:
print(f'Using {provider.__name__} provider and {model} model')
else:
print(f'Using {provider.__name__} provider')
debug.last_provider = provider
debug.last_model = model
return model, provider
def get_last_provider(as_dict: bool = False) -> Union[ProviderType, dict[str, str]]:
"""
Retrieves the last used provider.
Args:
as_dict (bool, optional): If True, returns the provider information as a dictionary.
Returns:
Union[ProviderType, dict[str, str]]: The last used provider, either as an object or a dictionary.
"""
last = debug.last_provider
if isinstance(last, BaseRetryProvider):
last = last.last_provider
if last and as_dict:
return {
"name": last.__name__,
"url": last.url,
"model": debug.last_model,
}
return last

View File

@ -1,9 +1,15 @@
from __future__ import annotations
import os
from .stubs import ChatCompletion, ChatCompletionChunk
from ..providers.types import BaseProvider, ProviderType, FinishReason from ..providers.types import BaseProvider, ProviderType, FinishReason
from typing import Union, Iterator from typing import Union, Iterator, AsyncIterator
ImageProvider = Union[BaseProvider, object] ImageProvider = Union[BaseProvider, object]
Proxies = Union[dict, str] Proxies = Union[dict, str]
IterResponse = Iterator[Union[ChatCompletion, ChatCompletionChunk]] IterResponse = Iterator[Union[ChatCompletion, ChatCompletionChunk]]
AsyncIterResponse = AsyncIterator[Union[ChatCompletion, ChatCompletionChunk]]
class ClientProxyMixin(): class ClientProxyMixin():
def get_proxy(self) -> Union[str, None]: def get_proxy(self) -> Union[str, None]:
@ -21,8 +27,6 @@ class Client(ClientProxyMixin):
self, self,
api_key: str = None, api_key: str = None,
proxies: Proxies = None, proxies: Proxies = None,
provider: ProviderType = None,
image_provider: ImageProvider = None,
**kwargs **kwargs
) -> None: ) -> None:
self.api_key: str = api_key self.api_key: str = api_key

View File

@ -10,7 +10,7 @@ except ImportError as e:
def run_gui(host: str = '0.0.0.0', port: int = 8080, debug: bool = False) -> None: def run_gui(host: str = '0.0.0.0', port: int = 8080, debug: bool = False) -> None:
if import_error is not None: if import_error is not None:
raise MissingRequirementsError(f'Install "gui" requirements | pip install g4f[gui] -U\n{import_error}') raise MissingRequirementsError(f'Install "gui" requirements | pip install -U g4f[gui]\n{import_error}')
if debug: if debug:
from g4f import debug from g4f import debug

View File

@ -77,17 +77,35 @@
</div> </div>
</div> </div>
<div class="settings"> <div class="settings">
<textarea name="OpenaiChat[api_key]" class="box" placeholder="OpenaiChat: accessToken"></textarea> <div class="field box">
<div class="field"> <label for="OpenaiChat-api_key" class="label" title="">OpenaiChat: access_token</label>
<input id="auto_continue" type="checkbox" name="OpenaiChat[auto_continue]" checked/> <textarea id="OpenaiChat-api_key" name="OpenaiChat[api_key]" placeholder="..."></textarea>
<label for="auto_continue" title=""></label> </div>
<span class="about">Auto Continue</span> <div class="field">
<span class="label">OpenaiChat: Auto continue</span>
<input id="OpenaiChat-auto_continue" type="checkbox" name="OpenaiChat[auto_continue]" checked/>
<label for="OpenaiChat-auto_continue" class="toogle" title=""></label>
</div>
<div class="field box">
<label for="Bing-api_key" class="label" title="">Bing: "_U" cookie</label>
<textarea id="Bing-api_key" name="Bing[api_key]" placeholder="..."></textarea>
</div>
<div class="field box">
<label for="Gemini-api_key" class="label" title="">Gemini: Auth cookies</label>
<textarea id="Gemini-api_key" name="Gemini[api_key]" placeholder="..."></textarea>
</div>
<div class="field box">
<label for="Openai-api_key" class="label" title="">Openai: api_key</label>
<textarea id="Openai-api_key" name="Openai[api_key]" placeholder="..."></textarea>
</div>
<div class="field box">
<label for="GeminiPro-api_key" class="label" title="">GeminiPro: api_key</label>
<textarea id="GeminiPro-api_key" name="GeminiPro[api_key]" placeholder="..."></textarea>
</div>
<div class="field box">
<label for="HuggingFace-api_key" class="label" title="">HuggingFace: api_key</label>
<textarea id="HuggingFace-api_key" name="HuggingFace[api_key]" placeholder="..."></textarea>
</div> </div>
<textarea name="Bing[api_key]" class="box" placeholder="Bing: _U cookie"></textarea>
<textarea name="Gemini[api_key]" class="box" placeholder="Gemini: Auth cookies"></textarea>
<textarea name="Openai[api_key]" class="box" placeholder="Openai: api_key></textarea>
<textarea name="Grok[api_key]" class="box" placeholder="Grok: api_key"></textarea>
<textarea name="GeminiPro[api_key]" class="box" placeholder="GeminiPro: api_key"></textarea>
</div> </div>
<div class="conversation"> <div class="conversation">
<textarea id="systemPrompt" class="box" placeholder="System prompt"></textarea> <textarea id="systemPrompt" class="box" placeholder="System prompt"></textarea>

View File

@ -520,7 +520,7 @@ label[for="camera"] {
} }
.buttons label, .buttons label,
.settings label { .settings label.toogle {
cursor: pointer; cursor: pointer;
text-indent: -9999px; text-indent: -9999px;
width: 50px; width: 50px;
@ -538,7 +538,7 @@ label[for="camera"] {
} }
.buttons label:after, .buttons label:after,
.settings label:after { .settings label.toogle:after {
content: ""; content: "";
position: absolute; position: absolute;
top: 50%; top: 50%;
@ -560,17 +560,13 @@ label[for="camera"] {
left: calc(100% - 5px - 20px); left: calc(100% - 5px - 20px);
} }
.buttons, .settings { .buttons {
display: flex; display: flex;
align-items: center; align-items: center;
justify-content: left; justify-content: left;
width: 100%; width: 100%;
} }
.settings textarea{
height: 20px;
}
.field { .field {
height: fit-content; height: fit-content;
display: flex; display: flex;
@ -1017,7 +1013,7 @@ a:-webkit-any-link {
border: 1px solid #e4d4ffc9; border: 1px solid #e4d4ffc9;
} }
#systemPrompt { #systemPrompt, .settings textarea {
font-size: 15px; font-size: 15px;
width: 100%; width: 100%;
color: var(--colour-3); color: var(--colour-3);
@ -1028,6 +1024,30 @@ a:-webkit-any-link {
resize: vertical; resize: vertical;
} }
.settings {
width: 100%;
display: none;
}
.settings .field {
margin: var(--inner-gap) 0;
}
.settings textarea {
background-color: transparent;
border: none;
padding: var(--inner-gap) 0;
}
.settings .label {
font-size: 15px;
padding: var(--inner-gap) 0;
width: fit-content;
min-width: 190px;
margin-left: var(--section-gap);
white-space:nowrap;
}
::-webkit-scrollbar { ::-webkit-scrollbar {
width: 10px; width: 10px;
} }

View File

@ -98,7 +98,7 @@ class Api():
if conversation_id and provider in conversations and conversation_id in conversations[provider]: if conversation_id and provider in conversations and conversation_id in conversations[provider]:
kwargs["conversation"] = conversations[provider][conversation_id] kwargs["conversation"] = conversations[provider][conversation_id]
model = json_data.get('model', models.default) model = json_data.get('model') or models.default
return { return {
"model": model, "model": model,
@ -169,4 +169,8 @@ def get_error_message(exception: Exception) -> str:
Returns: Returns:
str: A formatted error message string. str: A formatted error message string.
""" """
return f"{get_last_provider().__name__}: {type(exception).__name__}: {exception}" message = f"{type(exception).__name__}: {exception}"
provider = get_last_provider()
if provider is None:
return message
return f"{provider.__name__}: {message}"

View File

@ -31,7 +31,7 @@ def run_webview(
f"g4f - {g4f.version.utils.current_version}", f"g4f - {g4f.version.utils.current_version}",
os.path.join(dirname, "client/index.html"), os.path.join(dirname, "client/index.html"),
text_select=True, text_select=True,
js_api=Api(), js_api=JsApi(),
) )
if has_platformdirs and storage_path is None: if has_platformdirs and storage_path is None:
storage_path = user_config_dir("g4f-webview") storage_path = user_config_dir("g4f-webview")

View File

@ -1,8 +1,8 @@
from ..typing import Union, Iterator, Messages from ..typing import Union, Messages
from ..stubs import ChatCompletion, ChatCompletionChunk from ..locals.provider import LocalProvider
from ._engine import LocalProvider from ..locals.models import get_models
from ._models import models from ..client.client import iter_response, filter_none
from ..client import iter_response, filter_none, IterResponse from ..client.types import IterResponse
class LocalClient(): class LocalClient():
def __init__(self, **kwargs) -> None: def __init__(self, **kwargs) -> None:
@ -10,7 +10,7 @@ class LocalClient():
@staticmethod @staticmethod
def list_models(): def list_models():
return list(models.keys()) return list(get_models())
class Completions(): class Completions():
def __init__(self, client: LocalClient): def __init__(self, client: LocalClient):
@ -25,8 +25,7 @@ class Completions():
max_tokens: int = None, max_tokens: int = None,
stop: Union[list[str], str] = None, stop: Union[list[str], str] = None,
**kwargs **kwargs
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]: ) -> IterResponse:
stop = [stop] if isinstance(stop, str) else stop stop = [stop] if isinstance(stop, str) else stop
response = LocalProvider.create_completion( response = LocalProvider.create_completion(
model, messages, stream, model, messages, stream,

View File

@ -1,42 +0,0 @@
import os
from gpt4all import GPT4All
from ._models import models
class LocalProvider:
@staticmethod
def create_completion(model, messages, stream, **kwargs):
if model not in models:
raise ValueError(f"Model '{model}' not found / not yet implemented")
model = models[model]
model_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models/')
full_model_path = os.path.join(model_dir, model['path'])
if not os.path.isfile(full_model_path):
print(f"Model file '{full_model_path}' not found.")
download = input(f'Do you want to download {model["path"]} ? [y/n]')
if download in ['y', 'Y']:
GPT4All.download_model(model['path'], model_dir)
else:
raise ValueError(f"Model '{model['path']}' not found.")
model = GPT4All(model_name=model['path'],
#n_threads=8,
verbose=False,
allow_download=False,
model_path=model_dir)
system_template = next((message['content'] for message in messages if message['role'] == 'system'),
'A chat between a curious user and an artificial intelligence assistant.')
prompt_template = 'USER: {0}\nASSISTANT: '
conversation = '\n'.join(f"{msg['role'].upper()}: {msg['content']}" for msg in messages) + "\nASSISTANT: "
with model.chat_session(system_template, prompt_template):
if stream:
for token in model.generate(conversation, streaming=True):
yield token
else:
yield model.generate(conversation)

View File

@ -1,86 +0,0 @@
models = {
"mistral-7b": {
"path": "mistral-7b-openorca.gguf2.Q4_0.gguf",
"ram": "8",
"prompt": "<|im_start|>user\n%1<|im_end|>\n<|im_start|>assistant\n",
"system": "<|im_start|>system\nYou are MistralOrca, a large language model trained by Alignment Lab AI. For multi-step problems, write out your reasoning for each step.\n<|im_end|>"
},
"mistral-7b-instruct": {
"path": "mistral-7b-instruct-v0.1.Q4_0.gguf",
"ram": "8",
"prompt": "[INST] %1 [/INST]",
"system": None
},
"gpt4all-falcon": {
"path": "gpt4all-falcon-newbpe-q4_0.gguf",
"ram": "8",
"prompt": "### Instruction:\n%1\n### Response:\n",
"system": None
},
"orca-2": {
"path": "orca-2-13b.Q4_0.gguf",
"ram": "16",
"prompt": None,
"system": None
},
"wizardlm-13b": {
"path": "wizardlm-13b-v1.2.Q4_0.gguf",
"ram": "16",
"prompt": None,
"system": None
},
"nous-hermes-llama2": {
"path": "nous-hermes-llama2-13b.Q4_0.gguf",
"ram": "16",
"prompt": "### Instruction:\n%1\n### Response:\n",
"system": None
},
"gpt4all-13b-snoozy": {
"path": "gpt4all-13b-snoozy-q4_0.gguf",
"ram": "16",
"prompt": None,
"system": None
},
"mpt-7b-chat": {
"path": "mpt-7b-chat-newbpe-q4_0.gguf",
"ram": "8",
"prompt": "<|im_start|>user\n%1<|im_end|>\n<|im_start|>assistant\n",
"system": "<|im_start|>system\n- You are a helpful assistant chatbot trained by MosaicML.\n- You answer questions.\n- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.\n- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.<|im_end|>"
},
"orca-mini-3b": {
"path": "orca-mini-3b-gguf2-q4_0.gguf",
"ram": "4",
"prompt": "### User:\n%1\n### Response:\n",
"system": "### System:\nYou are an AI assistant that follows instruction extremely well. Help as much as you can.\n\n"
},
"replit-code-3b": {
"path": "replit-code-v1_5-3b-newbpe-q4_0.gguf",
"ram": "4",
"prompt": "%1",
"system": None
},
"starcoder": {
"path": "starcoder-newbpe-q4_0.gguf",
"ram": "4",
"prompt": "%1",
"system": None
},
"rift-coder-7b": {
"path": "rift-coder-v0-7b-q4_0.gguf",
"ram": "8",
"prompt": "%1",
"system": None
},
"all-MiniLM-L6-v2": {
"path": "all-MiniLM-L6-v2-f16.gguf",
"ram": "1",
"prompt": None,
"system": None
},
"mistral-7b-german": {
"path": "em_german_mistral_v01.Q4_0.gguf",
"ram": "8",
"prompt": "USER: %1 ASSISTANT: ",
"system": "Du bist ein hilfreicher Assistent. "
}
}

View File

@ -1 +0,0 @@
.

0
g4f/locals/__init__.py Normal file
View File

50
g4f/locals/models.py Normal file
View File

@ -0,0 +1,50 @@
import os
import requests
import json
from ..requests.raise_for_status import raise_for_status
def load_models():
response = requests.get("https://gpt4all.io/models/models3.json")
raise_for_status(response)
return format_models(response.json())
def get_model_name(filename: str) -> str:
name = filename.split(".", 1)[0]
for replace in ["-v1_5", "-v1", "-q4_0", "_v01", "-v0", "-f16", "-gguf2", "-newbpe"]:
name = name.replace(replace, "")
return name
def format_models(models: list) -> dict:
return {get_model_name(model["filename"]): {
"path": model["filename"],
"ram": model["ramrequired"],
"prompt": model["promptTemplate"] if "promptTemplate" in model else None,
"system": model["systemPrompt"] if "systemPrompt" in model else None,
} for model in models}
def read_models(file_path: str):
with open(file_path, "rb") as f:
return json.load(f)
def save_models(file_path: str, data):
with open(file_path, 'w') as f:
json.dump(data, f, indent=4)
def get_model_dir() -> str:
local_dir = os.path.dirname(os.path.abspath(__file__))
project_dir = os.path.dirname(os.path.dirname(local_dir))
model_dir = os.path.join(project_dir, "models")
if os.path.exists(model_dir):
return model_dir
def get_models() -> dict[str, dict]:
model_dir = get_model_dir()
file_path = os.path.join(model_dir, "models.json")
if os.path.isfile(file_path):
return read_models(file_path)
else:
models = load_models()
save_models(file_path, models)
return models

72
g4f/locals/provider.py Normal file
View File

@ -0,0 +1,72 @@
import os
from gpt4all import GPT4All
from .models import get_models
from ..typing import Messages
MODEL_LIST: dict[str, dict] = None
def find_model_dir(model_file: str) -> str:
local_dir = os.path.dirname(os.path.abspath(__file__))
project_dir = os.path.dirname(os.path.dirname(local_dir))
new_model_dir = os.path.join(project_dir, "models")
new_model_file = os.path.join(new_model_dir, model_file)
if os.path.isfile(new_model_file):
return new_model_dir
old_model_dir = os.path.join(local_dir, "models")
old_model_file = os.path.join(old_model_dir, model_file)
if os.path.isfile(old_model_file):
return old_model_dir
working_dir = "./"
for root, dirs, files in os.walk(working_dir):
if model_file in files:
return root
return new_model_dir
class LocalProvider:
@staticmethod
def create_completion(model: str, messages: Messages, stream: bool = False, **kwargs):
global MODEL_LIST
if MODEL_LIST is None:
MODEL_LIST = get_models()
if model not in MODEL_LIST:
raise ValueError(f'Model "{model}" not found / not yet implemented')
model = MODEL_LIST[model]
model_file = model["path"]
model_dir = find_model_dir(model_file)
if not os.path.isfile(os.path.join(model_dir, model_file)):
print(f'Model file "models/{model_file}" not found.')
download = input(f"Do you want to download {model_file}? [y/n]: ")
if download in ["y", "Y"]:
GPT4All.download_model(model_file, model_dir)
else:
raise ValueError(f'Model "{model_file}" not found.')
model = GPT4All(model_name=model_file,
#n_threads=8,
verbose=False,
allow_download=False,
model_path=model_dir)
system_message = "\n".join(message["content"] for message in messages if message["role"] == "system")
if system_message:
system_message = "A chat between a curious user and an artificial intelligence assistant."
prompt_template = "USER: {0}\nASSISTANT: "
conversation = "\n" . join(
f"{message['role'].upper()}: {message['content']}"
for message in messages
if message["role"] != "system"
) + "\nASSISTANT: "
with model.chat_session(system_message, prompt_template):
if stream:
for token in model.generate(conversation, streaming=True):
yield token
else:
yield model.generate(conversation)

View File

@ -96,6 +96,7 @@ class BaseRetryProvider(BaseProvider):
__name__: str = "RetryProvider" __name__: str = "RetryProvider"
supports_stream: bool = True supports_stream: bool = True
last_provider: Type[BaseProvider] = None
ProviderType = Union[Type[BaseProvider], BaseRetryProvider] ProviderType = Union[Type[BaseProvider], BaseRetryProvider]

0
models/.local-model-here Normal file
View File