mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-11-26 21:21:21 +03:00
Merge pull request #1667 from hlohaus/phind2
Expire cache, Fix multiple websocket conversations in OpenaiChat
This commit is contained in:
commit
b3d19c5660
@ -26,38 +26,35 @@ class GeminiPro(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
stream: bool = False,
|
||||
proxy: str = None,
|
||||
api_key: str = None,
|
||||
api_base: str = None,
|
||||
use_auth_header: bool = True,
|
||||
api_base: str = "https://generativelanguage.googleapis.com/v1beta",
|
||||
use_auth_header: bool = False,
|
||||
image: ImageType = None,
|
||||
connector: BaseConnector = None,
|
||||
**kwargs
|
||||
) -> AsyncResult:
|
||||
model = "gemini-pro-vision" if not model and image else model
|
||||
model = "gemini-pro-vision" if not model and image is not None else model
|
||||
model = cls.get_model(model)
|
||||
|
||||
if not api_key:
|
||||
raise MissingAuthError('Missing "api_key"')
|
||||
|
||||
headers = params = None
|
||||
if api_base and use_auth_header:
|
||||
if use_auth_header:
|
||||
headers = {"Authorization": f"Bearer {api_key}"}
|
||||
else:
|
||||
params = {"key": api_key}
|
||||
|
||||
if not api_base:
|
||||
api_base = f"https://generativelanguage.googleapis.com/v1beta"
|
||||
|
||||
method = "streamGenerateContent" if stream else "generateContent"
|
||||
url = f"{api_base.rstrip('/')}/models/{model}:{method}"
|
||||
async with ClientSession(headers=headers, connector=get_connector(connector, proxy)) as session:
|
||||
contents = [
|
||||
{
|
||||
"role": "model" if message["role"] == "assistant" else message["role"],
|
||||
"role": "model" if message["role"] == "assistant" else "user",
|
||||
"parts": [{"text": message["content"]}]
|
||||
}
|
||||
for message in messages
|
||||
]
|
||||
if image:
|
||||
if image is not None:
|
||||
image = to_bytes(image)
|
||||
contents[-1]["parts"].append({
|
||||
"inline_data": {
|
||||
@ -87,7 +84,8 @@ class GeminiPro(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
lines = [b"{\n"]
|
||||
elif chunk == b",\r\n" or chunk == b"]":
|
||||
try:
|
||||
data = json.loads(b"".join(lines))
|
||||
data = b"".join(lines)
|
||||
data = json.loads(data)
|
||||
yield data["candidates"][0]["content"]["parts"][0]["text"]
|
||||
except:
|
||||
data = data.decode() if isinstance(data, bytes) else data
|
||||
|
@ -46,7 +46,7 @@ async def create_conversation(session: ClientSession, proxy: str = None) -> Conv
|
||||
}
|
||||
for k, v in headers.items():
|
||||
session.headers[k] = v
|
||||
url = 'https://www.bing.com/turing/conversation/create?bundleVersion=1.1579.2'
|
||||
url = 'https://www.bing.com/turing/conversation/create?bundleVersion=1.1626.1'
|
||||
async with session.get(url, headers=headers, proxy=proxy) as response:
|
||||
try:
|
||||
data = await response.json()
|
||||
|
@ -5,15 +5,15 @@ import uuid
|
||||
import json
|
||||
import os
|
||||
import base64
|
||||
import time
|
||||
from aiohttp import ClientWebSocketResponse
|
||||
|
||||
try:
|
||||
from py_arkose_generator.arkose import get_values_for_request
|
||||
from async_property import async_cached_property
|
||||
has_requirements = True
|
||||
has_arkose_generator = True
|
||||
except ImportError:
|
||||
async_cached_property = property
|
||||
has_requirements = False
|
||||
has_arkose_generator = False
|
||||
|
||||
try:
|
||||
from selenium.webdriver.common.by import By
|
||||
from selenium.webdriver.support.ui import WebDriverWait
|
||||
@ -33,7 +33,7 @@ from ... import debug
|
||||
|
||||
class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
"""A class for creating and managing conversations with OpenAI chat service"""
|
||||
|
||||
|
||||
url = "https://chat.openai.com"
|
||||
working = True
|
||||
needs_auth = True
|
||||
@ -47,7 +47,7 @@ class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
_api_key: str = None
|
||||
_headers: dict = None
|
||||
_cookies: Cookies = None
|
||||
_last_message: int = 0
|
||||
_expires: int = None
|
||||
|
||||
@classmethod
|
||||
async def create(
|
||||
@ -80,7 +80,7 @@ class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
A Response object that contains the generator, action, messages, and options
|
||||
"""
|
||||
# Add the user input to the messages list
|
||||
if prompt:
|
||||
if prompt is not None:
|
||||
messages.append({
|
||||
"role": "user",
|
||||
"content": prompt
|
||||
@ -102,7 +102,7 @@ class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
messages,
|
||||
kwargs
|
||||
)
|
||||
|
||||
|
||||
@classmethod
|
||||
async def upload_image(
|
||||
cls,
|
||||
@ -162,7 +162,7 @@ class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
response.raise_for_status()
|
||||
image_data["download_url"] = (await response.json())["download_url"]
|
||||
return ImageRequest(image_data)
|
||||
|
||||
|
||||
@classmethod
|
||||
async def get_default_model(cls, session: StreamSession, headers: dict):
|
||||
"""
|
||||
@ -185,7 +185,7 @@ class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
return cls.default_model
|
||||
raise RuntimeError(f"Response: {data}")
|
||||
return cls.default_model
|
||||
|
||||
|
||||
@classmethod
|
||||
def create_messages(cls, messages: Messages, image_request: ImageRequest = None):
|
||||
"""
|
||||
@ -334,9 +334,7 @@ class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
Raises:
|
||||
RuntimeError: If an error occurs during processing.
|
||||
"""
|
||||
if not has_requirements:
|
||||
raise MissingRequirementsError('Install "py-arkose-generator" and "async_property" package')
|
||||
if not parent_id:
|
||||
if parent_id is None:
|
||||
parent_id = str(uuid.uuid4())
|
||||
|
||||
# Read api_key from arguments
|
||||
@ -348,7 +346,7 @@ class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
timeout=timeout
|
||||
) as session:
|
||||
# Read api_key and cookies from cache / browser config
|
||||
if cls._headers is None:
|
||||
if cls._headers is None or cls._expires is None or time.time() > cls._expires:
|
||||
if api_key is None:
|
||||
# Read api_key from cookies
|
||||
cookies = get_cookies("chat.openai.com", False) if cookies is None else cookies
|
||||
@ -357,8 +355,8 @@ class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
else:
|
||||
api_key = cls._api_key if api_key is None else api_key
|
||||
# Read api_key with session cookies
|
||||
if api_key is None and cookies:
|
||||
api_key = await cls.fetch_access_token(session, cls._headers)
|
||||
#if api_key is None and cookies:
|
||||
# api_key = await cls.fetch_access_token(session, cls._headers)
|
||||
# Load default model
|
||||
if cls.default_model is None and api_key is not None:
|
||||
try:
|
||||
@ -384,6 +382,19 @@ class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
else:
|
||||
cls._set_api_key(api_key)
|
||||
|
||||
async with session.post(
|
||||
f"{cls.url}/backend-api/sentinel/chat-requirements",
|
||||
json={"conversation_mode_kind": "primary_assistant"},
|
||||
headers=cls._headers
|
||||
) as response:
|
||||
response.raise_for_status()
|
||||
data = await response.json()
|
||||
need_arkose = data["arkose"]["required"]
|
||||
chat_token = data["token"]
|
||||
|
||||
if need_arkose and not has_arkose_generator:
|
||||
raise MissingRequirementsError('Install "py-arkose-generator" package')
|
||||
|
||||
try:
|
||||
image_request = await cls.upload_image(session, cls._headers, image, image_name) if image else None
|
||||
except Exception as e:
|
||||
@ -394,12 +405,10 @@ class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
model = cls.get_model(model).replace("gpt-3.5-turbo", "text-davinci-002-render-sha")
|
||||
fields = ResponseFields()
|
||||
while fields.finish_reason is None:
|
||||
arkose_token = await cls.get_arkose_token(session)
|
||||
conversation_id = conversation_id if fields.conversation_id is None else fields.conversation_id
|
||||
parent_id = parent_id if fields.message_id is None else fields.message_id
|
||||
data = {
|
||||
"action": action,
|
||||
"arkose_token": arkose_token,
|
||||
"conversation_mode": {"kind": "primary_assistant"},
|
||||
"force_paragen": False,
|
||||
"force_rate_limit": False,
|
||||
@ -417,7 +426,8 @@ class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
json=data,
|
||||
headers={
|
||||
"Accept": "text/event-stream",
|
||||
"OpenAI-Sentinel-Arkose-Token": arkose_token,
|
||||
**({"OpenAI-Sentinel-Arkose-Token": await cls.get_arkose_token(session)} if need_arkose else {}),
|
||||
"OpenAI-Sentinel-Chat-Requirements-Token": chat_token,
|
||||
**cls._headers
|
||||
}
|
||||
) as response:
|
||||
@ -437,17 +447,20 @@ class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
await cls.delete_conversation(session, cls._headers, fields.conversation_id)
|
||||
|
||||
@staticmethod
|
||||
async def iter_messages_ws(ws: ClientWebSocketResponse) -> AsyncIterator:
|
||||
async def iter_messages_ws(ws: ClientWebSocketResponse, conversation_id: str) -> AsyncIterator:
|
||||
while True:
|
||||
yield base64.b64decode((await ws.receive_json())["body"])
|
||||
message = await ws.receive_json()
|
||||
if message["conversation_id"] == conversation_id:
|
||||
yield base64.b64decode(message["body"])
|
||||
|
||||
@classmethod
|
||||
async def iter_messages_chunk(cls, messages: AsyncIterator, session: StreamSession, fields: ResponseFields) -> AsyncIterator:
|
||||
last_message: int = 0
|
||||
async for message in messages:
|
||||
if message.startswith(b'{"wss_url":'):
|
||||
async with session.ws_connect(json.loads(message)["wss_url"]) as ws:
|
||||
async for chunk in cls.iter_messages_chunk(cls.iter_messages_ws(ws), session, fields):
|
||||
message = json.loads(message)
|
||||
async with session.ws_connect(message["wss_url"]) as ws:
|
||||
async for chunk in cls.iter_messages_chunk(cls.iter_messages_ws(ws, message["conversation_id"]), session, fields):
|
||||
yield chunk
|
||||
break
|
||||
async for chunk in cls.iter_messages_line(session, message, fields):
|
||||
@ -467,6 +480,8 @@ class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
if not line.startswith(b"data: "):
|
||||
return
|
||||
elif line.startswith(b"data: [DONE]"):
|
||||
if fields.finish_reason is None:
|
||||
fields.finish_reason = "error"
|
||||
return
|
||||
try:
|
||||
line = json.loads(line[6:])
|
||||
@ -589,22 +604,13 @@ class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
@classmethod
|
||||
def _set_api_key(cls, api_key: str):
|
||||
cls._api_key = api_key
|
||||
cls._expires = int(time.time()) + 60 * 60 * 4
|
||||
cls._headers["Authorization"] = f"Bearer {api_key}"
|
||||
|
||||
@classmethod
|
||||
def _update_cookie_header(cls):
|
||||
cls._headers["Cookie"] = cls._format_cookies(cls._cookies)
|
||||
|
||||
class EndTurn:
|
||||
"""
|
||||
Class to represent the end of a conversation turn.
|
||||
"""
|
||||
def __init__(self):
|
||||
self.is_end = False
|
||||
|
||||
def end(self):
|
||||
self.is_end = True
|
||||
|
||||
class ResponseFields:
|
||||
"""
|
||||
Class to encapsulate response fields.
|
||||
@ -633,8 +639,8 @@ class Response():
|
||||
self._options = options
|
||||
self._fields = None
|
||||
|
||||
async def generator(self):
|
||||
if self._generator:
|
||||
async def generator(self) -> AsyncIterator:
|
||||
if self._generator is not None:
|
||||
self._generator = None
|
||||
chunks = []
|
||||
async for chunk in self._generator:
|
||||
@ -644,27 +650,29 @@ class Response():
|
||||
yield chunk
|
||||
chunks.append(str(chunk))
|
||||
self._message = "".join(chunks)
|
||||
if not self._fields:
|
||||
if self._fields is None:
|
||||
raise RuntimeError("Missing response fields")
|
||||
self.is_end = self._fields.end_turn
|
||||
self.is_end = self._fields.finish_reason == "stop"
|
||||
|
||||
def __aiter__(self):
|
||||
return self.generator()
|
||||
|
||||
@async_cached_property
|
||||
async def message(self) -> str:
|
||||
async def get_message(self) -> str:
|
||||
await self.generator()
|
||||
return self._message
|
||||
|
||||
async def get_fields(self):
|
||||
async def get_fields(self) -> dict:
|
||||
await self.generator()
|
||||
return {"conversation_id": self._fields.conversation_id, "parent_id": self._fields.message_id}
|
||||
return {
|
||||
"conversation_id": self._fields.conversation_id,
|
||||
"parent_id": self._fields.message_id
|
||||
}
|
||||
|
||||
async def next(self, prompt: str, **kwargs) -> Response:
|
||||
async def create_next(self, prompt: str, **kwargs) -> Response:
|
||||
return await OpenaiChat.create(
|
||||
**self._options,
|
||||
prompt=prompt,
|
||||
messages=await self.messages,
|
||||
messages=await self.get_messages(),
|
||||
action="next",
|
||||
**await self.get_fields(),
|
||||
**kwargs
|
||||
@ -676,13 +684,13 @@ class Response():
|
||||
raise RuntimeError("Can't continue message. Message already finished.")
|
||||
return await OpenaiChat.create(
|
||||
**self._options,
|
||||
messages=await self.messages,
|
||||
messages=await self.get_messages(),
|
||||
action="continue",
|
||||
**fields,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
async def variant(self, **kwargs) -> Response:
|
||||
async def create_variant(self, **kwargs) -> Response:
|
||||
if self.action != "next":
|
||||
raise RuntimeError("Can't create variant from continue or variant request.")
|
||||
return await OpenaiChat.create(
|
||||
@ -693,8 +701,7 @@ class Response():
|
||||
**kwargs
|
||||
)
|
||||
|
||||
@async_cached_property
|
||||
async def messages(self):
|
||||
async def get_messages(self) -> list:
|
||||
messages = self._messages
|
||||
messages.append({"role": "assistant", "content": await self.message})
|
||||
messages.append({"role": "assistant", "content": await self.message()})
|
||||
return messages
|
@ -65,6 +65,7 @@
|
||||
:root {
|
||||
--font-1: "Inter", sans-serif;
|
||||
--section-gap: 25px;
|
||||
--inner-gap: 15px;
|
||||
--border-radius-1: 8px;
|
||||
}
|
||||
|
||||
@ -204,6 +205,12 @@ body {
|
||||
gap: 10px;
|
||||
}
|
||||
|
||||
.conversations .convo .choise {
|
||||
position: absolute;
|
||||
right: 8px;
|
||||
background-color: var(--blur-bg);
|
||||
}
|
||||
|
||||
.conversations i {
|
||||
color: var(--conversations);
|
||||
cursor: pointer;
|
||||
@ -222,10 +229,14 @@ body {
|
||||
overflow-wrap: break-word;
|
||||
display: flex;
|
||||
gap: var(--section-gap);
|
||||
padding: var(--section-gap);
|
||||
padding: var(--inner-gap) var(--section-gap);
|
||||
padding-bottom: 0;
|
||||
}
|
||||
|
||||
.message.regenerate {
|
||||
opacity: 0.75;
|
||||
}
|
||||
|
||||
.message:last-child {
|
||||
animation: 0.6s show_message;
|
||||
}
|
||||
@ -393,10 +404,10 @@ body {
|
||||
#input-count {
|
||||
width: fit-content;
|
||||
font-size: 12px;
|
||||
padding: 6px 15px;
|
||||
padding: 6px var(--inner-gap);
|
||||
}
|
||||
|
||||
.stop_generating, .regenerate {
|
||||
.stop_generating, .toolbar .regenerate {
|
||||
position: absolute;
|
||||
z-index: 1000000;
|
||||
top: 0;
|
||||
@ -404,20 +415,20 @@ body {
|
||||
}
|
||||
|
||||
@media only screen and (min-width: 40em) {
|
||||
.stop_generating, .regenerate {
|
||||
.stop_generating, .toolbar .regenerate {
|
||||
left: 50%;
|
||||
transform: translateX(-50%);
|
||||
right: auto;
|
||||
}
|
||||
}
|
||||
|
||||
.stop_generating button, .regenerate button{
|
||||
.stop_generating button, .toolbar .regenerate button{
|
||||
backdrop-filter: blur(20px);
|
||||
-webkit-backdrop-filter: blur(20px);
|
||||
background-color: var(--blur-bg);
|
||||
border-radius: var(--border-radius-1);
|
||||
border: 1px solid var(--blur-border);
|
||||
padding: 5px 15px;
|
||||
padding: 5px var(--inner-gap);
|
||||
color: var(--colour-3);
|
||||
display: flex;
|
||||
justify-content: center;
|
||||
@ -601,7 +612,6 @@ select {
|
||||
.input-box {
|
||||
display: flex;
|
||||
align-items: center;
|
||||
padding-right: 15px;
|
||||
cursor: pointer;
|
||||
}
|
||||
|
||||
@ -785,7 +795,7 @@ a:-webkit-any-link {
|
||||
font-size: 15px;
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
padding: 12px 15px;
|
||||
padding: 12px var(--inner-gap);
|
||||
background: none;
|
||||
border: none;
|
||||
outline: none;
|
||||
@ -990,10 +1000,21 @@ a:-webkit-any-link {
|
||||
padding-right: 5px;
|
||||
padding-top: 2px;
|
||||
padding-bottom: 2px;
|
||||
top: 20px;
|
||||
left: 8px;
|
||||
position: absolute;
|
||||
bottom: 8px;
|
||||
right: 8px;
|
||||
}
|
||||
|
||||
#send-button:hover {
|
||||
border: 1px solid #e4d4ffc9;
|
||||
}
|
||||
|
||||
#systemPrompt {
|
||||
font-size: 15px;
|
||||
width: 100%;
|
||||
color: var(--colour-3);
|
||||
height: 50px;
|
||||
outline: none;
|
||||
padding: var(--inner-gap) var(--section-gap);
|
||||
resize: vertical;
|
||||
}
|
@ -37,10 +37,6 @@
|
||||
import llamaTokenizer from "llama-tokenizer-js"
|
||||
</script>
|
||||
<script src="https://unpkg.com/gpt-tokenizer/dist/cl100k_base.js" async></script>
|
||||
<script type="module" async>
|
||||
import { countWords } from 'https://esm.run/alfaaz';
|
||||
window.countWords = countWords;
|
||||
</script>
|
||||
<script>
|
||||
const user_image = '<img src="/assets/img/user.png" alt="your avatar">';
|
||||
const gpt_image = '<img src="/assets/img/gpt.png" alt="your avatar">';
|
||||
@ -55,7 +51,6 @@
|
||||
}
|
||||
|
||||
#message-input {
|
||||
margin-right: 30px;
|
||||
height: 82px;
|
||||
margin-left: 20px;
|
||||
}
|
||||
@ -116,6 +111,7 @@
|
||||
</div>
|
||||
</div>
|
||||
<div class="conversation">
|
||||
<textarea id="systemPrompt" class="box" placeholder="System prompt"></textarea>
|
||||
<div id="messages" class="box"></div>
|
||||
<div class="toolbar">
|
||||
<div id="input-count" class="">
|
||||
|
@ -1,28 +1,29 @@
|
||||
const colorThemes = document.querySelectorAll('[name="theme"]');
|
||||
const markdown = window.markdownit();
|
||||
const message_box = document.getElementById(`messages`);
|
||||
const message_input = document.getElementById(`message-input`);
|
||||
const messageInput = document.getElementById(`message-input`);
|
||||
const box_conversations = document.querySelector(`.top`);
|
||||
const stop_generating = document.querySelector(`.stop_generating`);
|
||||
const regenerate = document.querySelector(`.regenerate`);
|
||||
const sidebar = document.querySelector(".conversations");
|
||||
const sidebar_button = document.querySelector(".mobile-sidebar");
|
||||
const send_button = document.getElementById("send-button");
|
||||
const sendButton = document.getElementById("send-button");
|
||||
const imageInput = document.getElementById("image");
|
||||
const cameraInput = document.getElementById("camera");
|
||||
const fileInput = document.getElementById("file");
|
||||
const inputCount = document.getElementById("input-count")
|
||||
const modelSelect = document.getElementById("model");
|
||||
const systemPrompt = document.getElementById("systemPrompt")
|
||||
|
||||
let prompt_lock = false;
|
||||
|
||||
hljs.addPlugin(new CopyButtonPlugin());
|
||||
|
||||
message_input.addEventListener("blur", () => {
|
||||
messageInput.addEventListener("blur", () => {
|
||||
window.scrollTo(0, 0);
|
||||
});
|
||||
|
||||
message_input.addEventListener("focus", () => {
|
||||
messageInput.addEventListener("focus", () => {
|
||||
document.documentElement.scrollTop = document.documentElement.scrollHeight;
|
||||
});
|
||||
|
||||
@ -59,7 +60,7 @@ const register_remove_message = async () => {
|
||||
}
|
||||
const message_el = el.parentElement.parentElement;
|
||||
await remove_message(window.conversation_id, message_el.dataset.index);
|
||||
await load_conversation(window.conversation_id);
|
||||
await load_conversation(window.conversation_id, false);
|
||||
})
|
||||
}
|
||||
});
|
||||
@ -77,13 +78,13 @@ const delete_conversations = async () => {
|
||||
};
|
||||
|
||||
const handle_ask = async () => {
|
||||
message_input.style.height = `82px`;
|
||||
message_input.focus();
|
||||
messageInput.style.height = "82px";
|
||||
messageInput.focus();
|
||||
window.scrollTo(0, 0);
|
||||
|
||||
message = message_input.value
|
||||
message = messageInput.value
|
||||
if (message.length > 0) {
|
||||
message_input.value = '';
|
||||
messageInput.value = "";
|
||||
prompt_lock = true;
|
||||
count_input()
|
||||
await add_conversation(window.conversation_id, message);
|
||||
@ -135,7 +136,7 @@ const remove_cancel_button = async () => {
|
||||
}, 300);
|
||||
};
|
||||
|
||||
const filter_messages = (messages, filter_last_message = true) => {
|
||||
const prepare_messages = (messages, filter_last_message = true) => {
|
||||
// Removes none user messages at end
|
||||
if (filter_last_message) {
|
||||
let last_message;
|
||||
@ -147,7 +148,7 @@ const filter_messages = (messages, filter_last_message = true) => {
|
||||
}
|
||||
}
|
||||
|
||||
// Remove history, if it is selected
|
||||
// Remove history, if it's selected
|
||||
if (document.getElementById('history')?.checked) {
|
||||
if (filter_last_message) {
|
||||
messages = [messages.pop()];
|
||||
@ -157,20 +158,31 @@ const filter_messages = (messages, filter_last_message = true) => {
|
||||
}
|
||||
|
||||
let new_messages = [];
|
||||
for (i in messages) {
|
||||
new_message = messages[i];
|
||||
// Remove generated images from history
|
||||
new_message["content"] = new_message["content"].replaceAll(
|
||||
/<!-- generated images start -->[\s\S]+<!-- generated images end -->/gm,
|
||||
""
|
||||
)
|
||||
delete new_message["provider"];
|
||||
// Remove regenerated messages
|
||||
if (!new_message.regenerate) {
|
||||
new_messages.push(new_message)
|
||||
if (messages) {
|
||||
for (i in messages) {
|
||||
new_message = messages[i];
|
||||
// Remove generated images from history
|
||||
new_message.content = new_message.content.replaceAll(
|
||||
/<!-- generated images start -->[\s\S]+<!-- generated images end -->/gm,
|
||||
""
|
||||
)
|
||||
delete new_message["provider"];
|
||||
// Remove regenerated messages
|
||||
if (!new_message.regenerate) {
|
||||
new_messages.push(new_message)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Add system message
|
||||
system_content = systemPrompt?.value;
|
||||
if (system_content) {
|
||||
new_messages.unshift({
|
||||
"role": "system",
|
||||
"content": system_content
|
||||
});
|
||||
}
|
||||
|
||||
return new_messages;
|
||||
}
|
||||
|
||||
@ -179,7 +191,7 @@ const ask_gpt = async () => {
|
||||
messages = await get_messages(window.conversation_id);
|
||||
total_messages = messages.length;
|
||||
|
||||
messages = filter_messages(messages);
|
||||
messages = prepare_messages(messages);
|
||||
|
||||
window.scrollTo(0, 0);
|
||||
window.controller = new AbortController();
|
||||
@ -192,8 +204,6 @@ const ask_gpt = async () => {
|
||||
|
||||
message_box.scrollTop = message_box.scrollHeight;
|
||||
window.scrollTo(0, 0);
|
||||
await new Promise((r) => setTimeout(r, 500));
|
||||
window.scrollTo(0, 0);
|
||||
|
||||
el = message_box.querySelector('.count_total');
|
||||
el ? el.parentElement.removeChild(el) : null;
|
||||
@ -218,6 +228,8 @@ const ask_gpt = async () => {
|
||||
|
||||
message_box.scrollTop = message_box.scrollHeight;
|
||||
window.scrollTo(0, 0);
|
||||
|
||||
error = provider_result = null;
|
||||
try {
|
||||
let body = JSON.stringify({
|
||||
id: window.token,
|
||||
@ -241,49 +253,47 @@ const ask_gpt = async () => {
|
||||
} else {
|
||||
headers['content-type'] = 'application/json';
|
||||
}
|
||||
|
||||
const response = await fetch(`/backend-api/v2/conversation`, {
|
||||
method: 'POST',
|
||||
signal: window.controller.signal,
|
||||
headers: headers,
|
||||
body: body
|
||||
});
|
||||
|
||||
await new Promise((r) => setTimeout(r, 1000));
|
||||
window.scrollTo(0, 0);
|
||||
|
||||
const reader = response.body.pipeThrough(new TextDecoderStream()).getReader();
|
||||
error = provider = null;
|
||||
while (true) {
|
||||
const { value, done } = await reader.read();
|
||||
if (done) break;
|
||||
for (const line of value.split("\n")) {
|
||||
if (!line) continue;
|
||||
if (!line) {
|
||||
continue;
|
||||
}
|
||||
const message = JSON.parse(line);
|
||||
if (message.type == "content") {
|
||||
text += message.content;
|
||||
} else if (message["type"] == "provider") {
|
||||
provider = message.provider
|
||||
} else if (message.type == "provider") {
|
||||
provider_result = message.provider
|
||||
content.querySelector('.provider').innerHTML = `
|
||||
<a href="${provider.url}" target="_blank">
|
||||
${provider.name}
|
||||
<a href="${provider_result.url}" target="_blank">
|
||||
${provider_result.name}
|
||||
</a>
|
||||
${provider.model ? ' with ' + provider.model : ''}
|
||||
${provider_result.model ? ' with ' + provider_result.model : ''}
|
||||
`
|
||||
} else if (message["type"] == "error") {
|
||||
error = message["error"];
|
||||
} else if (message["type"] == "message") {
|
||||
console.error(message["message"])
|
||||
} else if (message.type == "error") {
|
||||
error = message.error;
|
||||
} else if (messag.type == "message") {
|
||||
console.error(messag.message)
|
||||
}
|
||||
}
|
||||
if (error) {
|
||||
console.error(error);
|
||||
content_inner.innerHTML += "<p>An error occured, please try again, if the problem persists, please use a other model or provider.</p>";
|
||||
content_inner.innerHTML += `<p><strong>An error occured:</strong> ${error}</p>`;
|
||||
} else {
|
||||
html = markdown_render(text);
|
||||
let lastElement, lastIndex = null;
|
||||
for (element of ['</p>', '</code></pre>', '</li>\n</ol>', '</li>\n</ul>']) {
|
||||
for (element of ['</p>', '</code></pre>', '</p>\n</li>\n</ol>', '</li>\n</ol>', '</li>\n</ul>']) {
|
||||
const index = html.lastIndexOf(element)
|
||||
if (index > lastIndex) {
|
||||
if (index - element.length > lastIndex) {
|
||||
lastElement = element;
|
||||
lastIndex = index;
|
||||
}
|
||||
@ -292,7 +302,7 @@ const ask_gpt = async () => {
|
||||
html = html.substring(0, lastIndex) + '<span id="cursor"></span>' + lastElement;
|
||||
}
|
||||
content_inner.innerHTML = html;
|
||||
content_count.innerText = count_words_and_tokens(text, provider?.model);
|
||||
content_count.innerText = count_words_and_tokens(text, provider_result?.model);
|
||||
highlight(content_inner);
|
||||
}
|
||||
|
||||
@ -302,7 +312,6 @@ const ask_gpt = async () => {
|
||||
}
|
||||
}
|
||||
if (!error) {
|
||||
// Remove cursor
|
||||
html = markdown_render(text);
|
||||
content_inner.innerHTML = html;
|
||||
highlight(content_inner);
|
||||
@ -313,30 +322,29 @@ const ask_gpt = async () => {
|
||||
}
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
|
||||
if (e.name != "AbortError") {
|
||||
error = true;
|
||||
text = "oops ! something went wrong, please try again / reload. [stacktrace in console]";
|
||||
content_inner.innerHTML = text;
|
||||
} else {
|
||||
content_inner.innerHTML += ` [aborted]`;
|
||||
text += ` [aborted]`
|
||||
content_inner.innerHTML += " [aborted]";
|
||||
if (text) text += " [aborted]";
|
||||
}
|
||||
}
|
||||
if (!error) {
|
||||
await add_message(window.conversation_id, "assistant", text, provider);
|
||||
if (!error && text) {
|
||||
await add_message(window.conversation_id, "assistant", text, provider_result);
|
||||
await load_conversation(window.conversation_id);
|
||||
} else {
|
||||
let cursorDiv = document.getElementById(`cursor`);
|
||||
if (cursorDiv) cursorDiv.parentNode.removeChild(cursorDiv);
|
||||
}
|
||||
window.scrollTo(0, 0);
|
||||
message_box.scrollTop = message_box.scrollHeight;
|
||||
await remove_cancel_button();
|
||||
await register_remove_message();
|
||||
prompt_lock = false;
|
||||
window.scrollTo(0, 0);
|
||||
await load_conversations();
|
||||
regenerate.classList.remove(`regenerate-hidden`);
|
||||
regenerate.classList.remove("regenerate-hidden");
|
||||
};
|
||||
|
||||
const clear_conversations = async () => {
|
||||
@ -366,22 +374,18 @@ const clear_conversation = async () => {
|
||||
|
||||
const show_option = async (conversation_id) => {
|
||||
const conv = document.getElementById(`conv-${conversation_id}`);
|
||||
const yes = document.getElementById(`yes-${conversation_id}`);
|
||||
const not = document.getElementById(`not-${conversation_id}`);
|
||||
const choi = document.getElementById(`cho-${conversation_id}`);
|
||||
|
||||
conv.style.display = `none`;
|
||||
yes.style.display = `block`;
|
||||
not.style.display = `block`;
|
||||
conv.style.display = "none";
|
||||
choi.style.display = "block";
|
||||
};
|
||||
|
||||
const hide_option = async (conversation_id) => {
|
||||
const conv = document.getElementById(`conv-${conversation_id}`);
|
||||
const yes = document.getElementById(`yes-${conversation_id}`);
|
||||
const not = document.getElementById(`not-${conversation_id}`);
|
||||
const choi = document.getElementById(`cho-${conversation_id}`);
|
||||
|
||||
conv.style.display = `block`;
|
||||
yes.style.display = `none`;
|
||||
not.style.display = `none`;
|
||||
conv.style.display = "block";
|
||||
choi.style.display = "none";
|
||||
};
|
||||
|
||||
const delete_conversation = async (conversation_id) => {
|
||||
@ -412,23 +416,31 @@ const new_conversation = async () => {
|
||||
window.conversation_id = uuid();
|
||||
|
||||
await clear_conversation();
|
||||
if (systemPrompt) {
|
||||
systemPrompt.value = "";
|
||||
}
|
||||
load_conversations();
|
||||
hide_sidebar();
|
||||
say_hello();
|
||||
};
|
||||
|
||||
const load_conversation = async (conversation_id) => {
|
||||
let messages = await get_messages(conversation_id);
|
||||
const load_conversation = async (conversation_id, scroll = true) => {
|
||||
let conversation = await get_conversation(conversation_id);
|
||||
let messages = conversation?.items || [];
|
||||
|
||||
if (systemPrompt) {
|
||||
systemPrompt.value = conversation.system || "";
|
||||
}
|
||||
|
||||
let elements = "";
|
||||
let last_model = null;
|
||||
for (i in messages) {
|
||||
let item = messages[i];
|
||||
last_model = item?.provider?.model;
|
||||
last_model = item.provider?.model;
|
||||
let next_i = parseInt(i) + 1;
|
||||
let next_provider = item.provider ? item.provider : (messages.length > next_i ? messages[next_i].provider : null);
|
||||
|
||||
let provider_link = item.provider?.name ? `<a href="${item.provider?.url}" target="_blank">${item.provider.name}</a>` : "";
|
||||
let provider_link = item.provider?.name ? `<a href="${item.provider.url}" target="_blank">${item.provider.name}</a>` : "";
|
||||
let provider = provider_link ? `
|
||||
<div class="provider">
|
||||
${provider_link}
|
||||
@ -436,7 +448,7 @@ const load_conversation = async (conversation_id) => {
|
||||
</div>
|
||||
` : "";
|
||||
elements += `
|
||||
<div class="message" data-index="${i}">
|
||||
<div class="message${item.regenerate ? " regenerate": ""}" data-index="${i}">
|
||||
<div class="${item.role}">
|
||||
${item.role == "assistant" ? gpt_image : user_image}
|
||||
<i class="fa-solid fa-xmark"></i>
|
||||
@ -454,7 +466,7 @@ const load_conversation = async (conversation_id) => {
|
||||
`;
|
||||
}
|
||||
|
||||
const filtered = filter_messages(messages, false);
|
||||
const filtered = prepare_messages(messages, false);
|
||||
if (filtered.length > 0) {
|
||||
last_model = last_model?.startsWith("gpt-4") ? "gpt-4" : "gpt-3.5-turbo"
|
||||
let count_total = GPTTokenizer_cl100k_base?.encodeChat(filtered, last_model).length
|
||||
@ -468,44 +480,35 @@ const load_conversation = async (conversation_id) => {
|
||||
register_remove_message();
|
||||
highlight(message_box);
|
||||
|
||||
message_box.scrollTo({ top: message_box.scrollHeight, behavior: "smooth" });
|
||||
if (scroll) {
|
||||
message_box.scrollTo({ top: message_box.scrollHeight, behavior: "smooth" });
|
||||
|
||||
setTimeout(() => {
|
||||
message_box.scrollTop = message_box.scrollHeight;
|
||||
}, 500);
|
||||
setTimeout(() => {
|
||||
message_box.scrollTop = message_box.scrollHeight;
|
||||
}, 500);
|
||||
}
|
||||
};
|
||||
|
||||
function count_tokens(model, text) {
|
||||
if (model.startsWith("gpt-3") || model.startsWith("gpt-4")) {
|
||||
return GPTTokenizer_cl100k_base?.encode(text).length;
|
||||
}
|
||||
if (model.startsWith("llama2") || model.startsWith("codellama")) {
|
||||
return llamaTokenizer?.encode(text).length;
|
||||
}
|
||||
if (model.startsWith("mistral") || model.startsWith("mixtral")) {
|
||||
return mistralTokenizer?.encode(text).length;
|
||||
}
|
||||
}
|
||||
|
||||
function count_words_and_tokens(text, model) {
|
||||
const tokens_count = model ? count_tokens(model, text) : null;
|
||||
const tokens_append = tokens_count ? `, ${tokens_count} tokens` : "";
|
||||
return countWords ? `(${countWords(text)} words${tokens_append})` : "";
|
||||
}
|
||||
|
||||
const get_conversation = async (conversation_id) => {
|
||||
async function get_conversation(conversation_id) {
|
||||
let conversation = await JSON.parse(
|
||||
localStorage.getItem(`conversation:${conversation_id}`)
|
||||
);
|
||||
return conversation;
|
||||
};
|
||||
}
|
||||
|
||||
const get_messages = async (conversation_id) => {
|
||||
async function save_conversation(conversation_id, conversation) {
|
||||
localStorage.setItem(
|
||||
`conversation:${conversation_id}`,
|
||||
JSON.stringify(conversation)
|
||||
);
|
||||
}
|
||||
|
||||
async function get_messages(conversation_id) {
|
||||
let conversation = await get_conversation(conversation_id);
|
||||
return conversation?.items || [];
|
||||
};
|
||||
}
|
||||
|
||||
const add_conversation = async (conversation_id, content) => {
|
||||
async function add_conversation(conversation_id, content) {
|
||||
if (content.length > 17) {
|
||||
title = content.substring(0, 17) + '...'
|
||||
} else {
|
||||
@ -513,31 +516,34 @@ const add_conversation = async (conversation_id, content) => {
|
||||
}
|
||||
|
||||
if (localStorage.getItem(`conversation:${conversation_id}`) == null) {
|
||||
localStorage.setItem(
|
||||
`conversation:${conversation_id}`,
|
||||
JSON.stringify({
|
||||
id: conversation_id,
|
||||
title: title,
|
||||
items: [],
|
||||
})
|
||||
);
|
||||
await save_conversation(conversation_id, {
|
||||
id: conversation_id,
|
||||
title: title,
|
||||
system: systemPrompt?.value,
|
||||
items: [],
|
||||
});
|
||||
}
|
||||
|
||||
history.pushState({}, null, `/chat/${conversation_id}`);
|
||||
};
|
||||
}
|
||||
|
||||
async function save_system_message() {
|
||||
if (!window.conversation_id) return;
|
||||
const conversation = await get_conversation(window.conversation_id);
|
||||
conversation.system = systemPrompt?.value;
|
||||
await save_conversation(window.conversation_id, conversation);
|
||||
}
|
||||
|
||||
const hide_last_message = async (conversation_id) => {
|
||||
const conversation = await get_conversation(conversation_id)
|
||||
const last_message = conversation.items.pop();
|
||||
if (last_message["role"] == "assistant") {
|
||||
last_message["regenerate"] = true;
|
||||
if (last_message !== null) {
|
||||
if (last_message["role"] == "assistant") {
|
||||
last_message["regenerate"] = true;
|
||||
}
|
||||
conversation.items.push(last_message);
|
||||
}
|
||||
conversation.items.push(last_message);
|
||||
|
||||
localStorage.setItem(
|
||||
`conversation:${conversation_id}`,
|
||||
JSON.stringify(conversation)
|
||||
);
|
||||
await save_conversation(conversation_id, conversation);
|
||||
};
|
||||
|
||||
const remove_message = async (conversation_id, index) => {
|
||||
@ -545,17 +551,16 @@ const remove_message = async (conversation_id, index) => {
|
||||
let new_items = [];
|
||||
for (i in conversation.items) {
|
||||
if (i == index - 1) {
|
||||
delete conversation.items[i]["regenerate"];
|
||||
if (!conversation.items[index]?.regenerate) {
|
||||
delete conversation.items[i]["regenerate"];
|
||||
}
|
||||
}
|
||||
if (i != index) {
|
||||
new_items.push(conversation.items[i])
|
||||
}
|
||||
}
|
||||
conversation.items = new_items;
|
||||
localStorage.setItem(
|
||||
`conversation:${conversation_id}`,
|
||||
JSON.stringify(conversation)
|
||||
);
|
||||
await save_conversation(conversation_id, conversation);
|
||||
};
|
||||
|
||||
const add_message = async (conversation_id, role, content, provider) => {
|
||||
@ -566,12 +571,7 @@ const add_message = async (conversation_id, role, content, provider) => {
|
||||
content: content,
|
||||
provider: provider
|
||||
});
|
||||
|
||||
localStorage.setItem(
|
||||
`conversation:${conversation_id}`,
|
||||
JSON.stringify(conversation)
|
||||
);
|
||||
|
||||
await save_conversation(conversation_id, conversation);
|
||||
return conversation.items.length - 1;
|
||||
};
|
||||
|
||||
@ -594,8 +594,10 @@ const load_conversations = async () => {
|
||||
<span class="convo-title">${conversation.title}</span>
|
||||
</div>
|
||||
<i onclick="show_option('${conversation.id}')" class="fa-regular fa-trash" id="conv-${conversation.id}"></i>
|
||||
<i onclick="delete_conversation('${conversation.id}')" class="fa-regular fa-check" id="yes-${conversation.id}" style="display:none;"></i>
|
||||
<i onclick="hide_option('${conversation.id}')" class="fa-regular fa-x" id="not-${conversation.id}" style="display:none;"></i>
|
||||
<div id="cho-${conversation.id}" class="choise" style="display:none;">
|
||||
<i onclick="delete_conversation('${conversation.id}')" class="fa-regular fa-check"></i>
|
||||
<i onclick="hide_option('${conversation.id}')" class="fa-regular fa-x"></i>
|
||||
</div>
|
||||
</div>
|
||||
`;
|
||||
}
|
||||
@ -733,15 +735,45 @@ colorThemes.forEach((themeOption) => {
|
||||
});
|
||||
});
|
||||
|
||||
function count_tokens(model, text) {
|
||||
if (model) {
|
||||
if (model.startsWith("llama2") || model.startsWith("codellama")) {
|
||||
return llamaTokenizer?.encode(text).length;
|
||||
}
|
||||
if (model.startsWith("mistral") || model.startsWith("mixtral")) {
|
||||
return mistralTokenizer?.encode(text).length;
|
||||
}
|
||||
}
|
||||
return GPTTokenizer_cl100k_base?.encode(text).length;
|
||||
}
|
||||
|
||||
function count_words(text) {
|
||||
return text.trim().match(/[\w\u4E00-\u9FA5]+/gu)?.length || 0;
|
||||
}
|
||||
|
||||
function count_words_and_tokens(text, model) {
|
||||
return `(${count_words(text)} words, ${count_tokens(model, text)} tokens)`;
|
||||
}
|
||||
|
||||
let countFocus = messageInput;
|
||||
const count_input = async () => {
|
||||
if (message_input.value) {
|
||||
if (countFocus.value) {
|
||||
model = modelSelect.options[modelSelect.selectedIndex].value;
|
||||
inputCount.innerText = count_words_and_tokens(message_input.value, model);
|
||||
inputCount.innerText = count_words_and_tokens(countFocus.value, model);
|
||||
} else {
|
||||
inputCount.innerHTML = " "
|
||||
}
|
||||
};
|
||||
message_input.addEventListener("keyup", count_input);
|
||||
messageInput.addEventListener("keyup", count_input);
|
||||
systemPrompt.addEventListener("keyup", count_input);
|
||||
systemPrompt.addEventListener("focus", function() {
|
||||
countFocus = systemPrompt;
|
||||
count_input();
|
||||
});
|
||||
systemPrompt.addEventListener("blur", function() {
|
||||
countFocus = messageInput;
|
||||
count_input();
|
||||
});
|
||||
|
||||
window.onload = async () => {
|
||||
setTheme();
|
||||
@ -754,11 +786,9 @@ window.onload = async () => {
|
||||
say_hello()
|
||||
}
|
||||
|
||||
setTimeout(() => {
|
||||
load_conversations();
|
||||
}, 1);
|
||||
load_conversations();
|
||||
|
||||
message_input.addEventListener("keydown", async (evt) => {
|
||||
messageInput.addEventListener("keydown", async (evt) => {
|
||||
if (prompt_lock) return;
|
||||
|
||||
if (evt.keyCode === 13 && !evt.shiftKey) {
|
||||
@ -766,41 +796,22 @@ window.onload = async () => {
|
||||
console.log("pressed enter");
|
||||
await handle_ask();
|
||||
} else {
|
||||
message_input.style.removeProperty("height");
|
||||
message_input.style.height = message_input.scrollHeight + "px";
|
||||
messageInput.style.removeProperty("height");
|
||||
messageInput.style.height = messageInput.scrollHeight + "px";
|
||||
}
|
||||
});
|
||||
|
||||
send_button.addEventListener(`click`, async () => {
|
||||
sendButton.addEventListener(`click`, async () => {
|
||||
console.log("clicked send");
|
||||
if (prompt_lock) return;
|
||||
await handle_ask();
|
||||
});
|
||||
|
||||
messageInput.focus();
|
||||
|
||||
register_settings_localstorage();
|
||||
};
|
||||
|
||||
const observer = new MutationObserver((mutationsList) => {
|
||||
for (const mutation of mutationsList) {
|
||||
if (mutation.type === 'attributes' && mutation.attributeName === 'style') {
|
||||
const height = message_input.offsetHeight;
|
||||
|
||||
let heightValues = {
|
||||
81: "20px",
|
||||
82: "20px",
|
||||
100: "30px",
|
||||
119: "39px",
|
||||
138: "49px",
|
||||
150: "55px"
|
||||
}
|
||||
|
||||
send_button.style.top = heightValues[height] || '';
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
observer.observe(message_input, { attributes: true });
|
||||
|
||||
(async () => {
|
||||
response = await fetch('/backend-api/v2/models')
|
||||
models = await response.json()
|
||||
@ -875,4 +886,8 @@ fileInput.addEventListener('change', async (event) => {
|
||||
} else {
|
||||
delete fileInput.dataset.text;
|
||||
}
|
||||
});
|
||||
|
||||
systemPrompt?.addEventListener("blur", async () => {
|
||||
await save_system_message();
|
||||
});
|
Loading…
Reference in New Issue
Block a user