~ | support local llm inference

This commit is contained in:
abc 2024-03-11 18:26:34 +00:00
parent dd46cfdf65
commit b7342b1f13
5 changed files with 240 additions and 0 deletions

2
.gitignore vendored
View File

@ -50,3 +50,5 @@ prv.py
x.js
x.py
info.txt
local.py
*.gguf

109
g4f/local/__init__.py Normal file
View File

@ -0,0 +1,109 @@
import random, string, time, re
from ..typing import Union, Iterator, Messages
from ..stubs import ChatCompletion, ChatCompletionChunk
from .core.engine import LocalProvider
from .core.models import models
IterResponse = Iterator[Union[ChatCompletion, ChatCompletionChunk]]
def read_json(text: str) -> dict:
match = re.search(r"```(json|)\n(?P<code>[\S\s]+?)\n```", text)
if match:
return match.group("code")
return text
def iter_response(
response: Iterator[str],
stream: bool,
response_format: dict = None,
max_tokens: int = None,
stop: list = None
) -> IterResponse:
content = ""
finish_reason = None
completion_id = ''.join(random.choices(string.ascii_letters + string.digits, k=28))
for idx, chunk in enumerate(response):
content += str(chunk)
if max_tokens is not None and idx + 1 >= max_tokens:
finish_reason = "length"
first = -1
word = None
if stop is not None:
for word in list(stop):
first = content.find(word)
if first != -1:
content = content[:first]
break
if stream and first != -1:
first = chunk.find(word)
if first != -1:
chunk = chunk[:first]
else:
first = 0
if first != -1:
finish_reason = "stop"
if stream:
yield ChatCompletionChunk(chunk, None, completion_id, int(time.time()))
if finish_reason is not None:
break
finish_reason = "stop" if finish_reason is None else finish_reason
if stream:
yield ChatCompletionChunk(None, finish_reason, completion_id, int(time.time()))
else:
if response_format is not None and "type" in response_format:
if response_format["type"] == "json_object":
content = read_json(content)
yield ChatCompletion(content, finish_reason, completion_id, int(time.time()))
def filter_none(**kwargs):
for key in list(kwargs.keys()):
if kwargs[key] is None:
del kwargs[key]
return kwargs
class LocalClient():
def __init__(
self,
**kwargs
) -> None:
self.chat: Chat = Chat(self)
@staticmethod
def list_models():
return list(models.keys())
class Completions():
def __init__(self, client: LocalClient):
self.client: LocalClient = client
def create(
self,
messages: Messages,
model: str,
stream: bool = False,
response_format: dict = None,
max_tokens: int = None,
stop: Union[list[str], str] = None,
**kwargs
) -> Union[ChatCompletion, Iterator[ChatCompletionChunk]]:
stop = [stop] if isinstance(stop, str) else stop
response = LocalProvider.create_completion(
model, messages, stream,
**filter_none(
max_tokens=max_tokens,
stop=stop,
),
**kwargs
)
response = iter_response(response, stream, response_format, max_tokens, stop)
return response if stream else next(response)
class Chat():
completions: Completions
def __init__(self, client: LocalClient):
self.completions = Completions(client)

42
g4f/local/core/engine.py Normal file
View File

@ -0,0 +1,42 @@
import os
from gpt4all import GPT4All
from .models import models
class LocalProvider:
@staticmethod
def create_completion(model, messages, stream, **kwargs):
if model not in models:
raise ValueError(f"Model '{model}' not found / not yet implemented")
model = models[model]
model_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), '../models/')
full_model_path = os.path.join(model_dir, model['path'])
if not os.path.isfile(full_model_path):
print(f"Model file '{full_model_path}' not found.")
download = input(f'Do you want to download {model["path"]} ? [y/n]')
if download in ['y', 'Y']:
GPT4All.download_model(model['path'], model_dir)
else:
raise ValueError(f"Model '{model['path']}' not found.")
model = GPT4All(model_name=model['path'],
n_threads=8,
verbose=False,
allow_download=False,
model_path=model_dir)
system_template = next((message['content'] for message in messages if message['role'] == 'system'),
'A chat between a curious user and an artificial intelligence assistant.')
prompt_template = 'USER: {0}\nASSISTANT: '
conversation = '\n'.join(f"{msg['role'].upper()}: {msg['content']}" for msg in messages) + "\nASSISTANT: "
with model.chat_session(system_template, prompt_template):
if stream:
for token in model.generate(conversation, streaming=True):
yield token
else:
yield model.generate(conversation)

86
g4f/local/core/models.py Normal file
View File

@ -0,0 +1,86 @@
models = {
"mistral-7b": {
"path": "mistral-7b-openorca.gguf2.Q4_0.gguf",
"ram": "8",
"prompt": "<|im_start|>user\n%1<|im_end|>\n<|im_start|>assistant\n",
"system": "<|im_start|>system\nYou are MistralOrca, a large language model trained by Alignment Lab AI. For multi-step problems, write out your reasoning for each step.\n<|im_end|>"
},
"mistral-7b-instruct": {
"path": "mistral-7b-instruct-v0.1.Q4_0.gguf",
"ram": "8",
"prompt": "[INST] %1 [/INST]",
"system": None
},
"gpt4all-falcon": {
"path": "gpt4all-falcon-newbpe-q4_0.gguf",
"ram": "8",
"prompt": "### Instruction:\n%1\n### Response:\n",
"system": None
},
"orca-2": {
"path": "orca-2-13b.Q4_0.gguf",
"ram": "16",
"prompt": None,
"system": None
},
"wizardlm-13b": {
"path": "wizardlm-13b-v1.2.Q4_0.gguf",
"ram": "16",
"prompt": None,
"system": None
},
"nous-hermes-llama2": {
"path": "nous-hermes-llama2-13b.Q4_0.gguf",
"ram": "16",
"prompt": "### Instruction:\n%1\n### Response:\n",
"system": None
},
"gpt4all-13b-snoozy": {
"path": "gpt4all-13b-snoozy-q4_0.gguf",
"ram": "16",
"prompt": None,
"system": None
},
"mpt-7b-chat": {
"path": "mpt-7b-chat-newbpe-q4_0.gguf",
"ram": "8",
"prompt": "<|im_start|>user\n%1<|im_end|>\n<|im_start|>assistant\n",
"system": "<|im_start|>system\n- You are a helpful assistant chatbot trained by MosaicML.\n- You answer questions.\n- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.\n- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.<|im_end|>"
},
"orca-mini-3b": {
"path": "orca-mini-3b-gguf2-q4_0.gguf",
"ram": "4",
"prompt": "### User:\n%1\n### Response:\n",
"system": "### System:\nYou are an AI assistant that follows instruction extremely well. Help as much as you can.\n\n"
},
"replit-code-3b": {
"path": "replit-code-v1_5-3b-newbpe-q4_0.gguf",
"ram": "4",
"prompt": "%1",
"system": None
},
"starcoder": {
"path": "starcoder-newbpe-q4_0.gguf",
"ram": "4",
"prompt": "%1",
"system": None
},
"rift-coder-7b": {
"path": "rift-coder-v0-7b-q4_0.gguf",
"ram": "8",
"prompt": "%1",
"system": None
},
"all-MiniLM-L6-v2": {
"path": "all-MiniLM-L6-v2-f16.gguf",
"ram": "1",
"prompt": None,
"system": None
},
"mistral-7b-german": {
"path": "em_german_mistral_v01.Q4_0.gguf",
"ram": "8",
"prompt": "USER: %1 ASSISTANT: ",
"system": "Du bist ein hilfreicher Assistent. "
}
}

View File

@ -0,0 +1 @@
.