# G4F Client API Guide ## Table of Contents - [Introduction](#introduction) - [Getting Started](#getting-started) - [Switching to G4F Client](#switching-to-g4f-client) - [Initializing the Client](#initializing-the-client) - [Creating Chat Completions](#creating-chat-completions) - [Configuration](#configuration) - [Usage Examples](#usage-examples) - [Text Completions](#text-completions) - [Streaming Completions](#streaming-completions) - [Image Generation](#image-generation) - [Creating Image Variations](#creating-image-variations) - [Advanced Usage](#advanced-usage) - [Using a List of Providers with RetryProvider](#using-a-list-of-providers-with-retryprovider) - [Using GeminiProVision](#using-geminiprovision) - [Using a Vision Model](#using-a-vision-model) - [Command-line Chat Program](#command-line-chat-program) ## Introduction Welcome to the G4F Client API, a cutting-edge tool for seamlessly integrating advanced AI capabilities into your Python applications. This guide is designed to facilitate your transition from using the OpenAI client to the G4F Client, offering enhanced features while maintaining compatibility with the existing OpenAI API. ## Getting Started ### Switching to G4F Client **To begin using the G4F Client, simply update your import statement in your Python code:** **Old Import:** ```python from openai import OpenAI ``` **New Import:** ```python from g4f.client import Client as OpenAI ``` The G4F Client preserves the same familiar API interface as OpenAI, ensuring a smooth transition process. ## Initializing the Client To utilize the G4F Client, create a new instance. **Below is an example showcasing custom providers:** ```python from g4f.client import Client from g4f.Provider import BingCreateImages, OpenaiChat, Gemini client = Client( provider=OpenaiChat, image_provider=Gemini, # Add any other necessary parameters ) ``` ## Creating Chat Completions **Here’s an improved example of creating chat completions:** ```python response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[ { "role": "user", "content": "Say this is a test" } ] # Add any other necessary parameters ) ``` **This example:** - Asks a specific question `Say this is a test` - Configures various parameters like temperature and max_tokens for more control over the output - Disables streaming for a complete response You can adjust these parameters based on your specific needs. ## Configuration **You can set an `api_key` for your provider in the client and define a proxy for all outgoing requests:** ```python from g4f.client import Client client = Client( api_key="your_api_key_here", proxies="http://user:pass@host", # Add any other necessary parameters ) ``` ## Usage Examples ### Text Completions **Generate text completions using the `ChatCompletions` endpoint:** ```python from g4f.client import Client client = Client() response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[ { "role": "user", "content": "Say this is a test" } ] # Add any other necessary parameters ) print(response.choices[0].message.content) ``` ### Streaming Completions **Process responses incrementally as they are generated:** ```python from g4f.client import Client client = Client() stream = client.chat.completions.create( model="gpt-4", messages=[ { "role": "user", "content": "Say this is a test" } ], stream=True, ) for chunk in stream: if chunk.choices[0].delta.content: print(chunk.choices[0].delta.content or "", end="") ``` ### Image Generation **Generate images using a specified prompt:** ```python from g4f.client import Client client = Client() response = client.images.generate( model="flux", prompt="a white siamese cat" # Add any other necessary parameters ) image_url = response.data[0].url print(f"Generated image URL: {image_url}") ``` #### Base64 Response Format ```python from g4f.client import Client client = Client() response = client.images.generate( model="flux", prompt="a white siamese cat", response_format="b64_json" ) base64_text = response.data[0].b64_json print(base64_text) ``` ### Creating Image Variations **Create variations of an existing image:** ```python from g4f.client import Client client = Client() response = client.images.create_variation( image=open("cat.jpg", "rb"), model="bing" # Add any other necessary parameters ) image_url = response.data[0].url print(f"Generated image URL: {image_url}") ``` ## Advanced Usage ### Using a List of Providers with RetryProvider ```python from g4f.client import Client from g4f.Provider import RetryProvider, Phind, FreeChatgpt, Liaobots import g4f.debug g4f.debug.logging = True g4f.debug.version_check = False client = Client( provider=RetryProvider([Phind, FreeChatgpt, Liaobots], shuffle=False) ) response = client.chat.completions.create( model="", messages=[ { "role": "user", "content": "Hello" } ] ) print(response.choices[0].message.content) ``` ### Using GeminiProVision ```python from g4f.client import Client from g4f.Provider.GeminiPro import GeminiPro client = Client( api_key="your_api_key_here", provider=GeminiPro ) response = client.chat.completions.create( model="gemini-pro-vision", messages=[ { "role": "user", "content": "What are on this image?" } ], image=open("docs/waterfall.jpeg", "rb") ) print(response.choices[0].message.content) ``` ### Using a Vision Model **Analyze an image and generate a description:** ```python import g4f import requests from g4f.client import Client image = requests.get("https://raw.githubusercontent.com/xtekky/gpt4free/refs/heads/main/docs/cat.jpeg", stream=True).raw # Or: image = open("docs/cat.jpeg", "rb") client = Client() response = client.chat.completions.create( model=g4f.models.default, messages=[ { "role": "user", "content": "What are on this image?" } ], provider=g4f.Provider.Bing, image=image # Add any other necessary parameters ) print(response.choices[0].message.content) ``` ## Command-line Chat Program **Here's an example of a simple command-line chat program using the G4F Client:** ```python import g4f from g4f.client import Client # Initialize the GPT client with the desired provider client = Client() # Initialize an empty conversation history messages = [] while True: # Get user input user_input = input("You: ") # Check if the user wants to exit the chat if user_input.lower() == "exit": print("Exiting chat...") break # Exit the loop to end the conversation # Update the conversation history with the user's message messages.append({"role": "user", "content": user_input}) try: # Get GPT's response response = client.chat.completions.create( messages=messages, model=g4f.models.default, ) # Extract the GPT response and print it gpt_response = response.choices[0].message.content print(f"Bot: {gpt_response}") # Update the conversation history with GPT's response messages.append({"role": "assistant", "content": gpt_response}) except Exception as e: print(f"An error occurred: {e}") ``` This guide provides a comprehensive overview of the G4F Client API, demonstrating its versatility in handling various AI tasks, from text generation to image analysis and creation. By leveraging these features, you can build powerful and responsive applications that harness the capabilities of advanced AI models. --- [Return to Home](/)