from __future__ import annotations import asyncio import json import uuid import cloudscraper from typing import AsyncGenerator from ..typing import AsyncResult, Messages from .base_provider import AsyncGeneratorProvider, ProviderModelMixin from .helper import format_prompt class Cloudflare(AsyncGeneratorProvider, ProviderModelMixin): label = "Cloudflare AI" url = "https://playground.ai.cloudflare.com" api_endpoint = "https://playground.ai.cloudflare.com/api/inference" working = True supports_stream = True supports_system_message = True supports_message_history = True default_model = '@cf/meta/llama-3.1-8b-instruct-awq' models = [ '@hf/google/gemma-7b-it', '@cf/meta/llama-2-7b-chat-fp16', '@cf/meta/llama-2-7b-chat-int8', '@cf/meta/llama-3-8b-instruct', '@cf/meta/llama-3-8b-instruct-awq', '@hf/meta-llama/meta-llama-3-8b-instruct', default_model, '@cf/meta/llama-3.1-8b-instruct-fp8', '@cf/meta/llama-3.2-1b-instruct', '@hf/mistral/mistral-7b-instruct-v0.2', '@cf/microsoft/phi-2', '@cf/qwen/qwen1.5-0.5b-chat', '@cf/qwen/qwen1.5-1.8b-chat', '@cf/qwen/qwen1.5-14b-chat-awq', '@cf/qwen/qwen1.5-7b-chat-awq', '@cf/defog/sqlcoder-7b-2', ] model_aliases = { #"falcon-7b": "@cf/tiiuae/falcon-7b-instruct", "gemma-7b": "@hf/google/gemma-7b-it", "llama-2-7b": "@cf/meta/llama-2-7b-chat-fp16", "llama-2-7b": "@cf/meta/llama-2-7b-chat-int8", "llama-3-8b": "@cf/meta/llama-3-8b-instruct", "llama-3-8b": "@cf/meta/llama-3-8b-instruct-awq", "llama-3-8b": "@hf/meta-llama/meta-llama-3-8b-instruct", "llama-3.1-8b": "@cf/meta/llama-3.1-8b-instruct-awq", "llama-3.1-8b": "@cf/meta/llama-3.1-8b-instruct-fp8", "llama-3.2-1b": "@cf/meta/llama-3.2-1b-instruct", "phi-2": "@cf/microsoft/phi-2", "qwen-1.5-0-5b": "@cf/qwen/qwen1.5-0.5b-chat", "qwen-1.5-1-8b": "@cf/qwen/qwen1.5-1.8b-chat", "qwen-1.5-14b": "@cf/qwen/qwen1.5-14b-chat-awq", "qwen-1.5-7b": "@cf/qwen/qwen1.5-7b-chat-awq", #"sqlcoder-7b": "@cf/defog/sqlcoder-7b-2", } @classmethod def get_model(cls, model: str) -> str: if model in cls.models: return model elif model in cls.model_aliases: return cls.model_aliases[model] else: return cls.default_model @classmethod async def create_async_generator( cls, model: str, messages: Messages, proxy: str = None, **kwargs ) -> AsyncResult: model = cls.get_model(model) headers = { 'Accept': 'text/event-stream', 'Accept-Language': 'en-US,en;q=0.9', 'Cache-Control': 'no-cache', 'Content-Type': 'application/json', 'Origin': cls.url, 'Pragma': 'no-cache', 'Referer': f'{cls.url}/', 'Sec-Ch-Ua': '"Chromium";v="129", "Not=A?Brand";v="8"', 'Sec-Ch-Ua-Mobile': '?0', 'Sec-Ch-Ua-Platform': '"Linux"', 'Sec-Fetch-Dest': 'empty', 'Sec-Fetch-Mode': 'cors', 'Sec-Fetch-Site': 'same-origin', 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36', } cookies = { '__cf_bm': uuid.uuid4().hex, } scraper = cloudscraper.create_scraper() prompt = messages[-1]['content'] data = { "messages": [ {"role": "user", "content": prompt} ], "lora": None, "model": model, "max_tokens": 2048, "stream": True } max_retries = 5 for attempt in range(max_retries): try: response = scraper.post( cls.api_endpoint, headers=headers, cookies=cookies, json=data, stream=True ) if response.status_code == 403: await asyncio.sleep(2 ** attempt) continue response.raise_for_status() skip_tokens = ["", "", "", "[DONE]", "<|endoftext|>", "<|end|>"] filtered_response = "" for line in response.iter_lines(): if line.startswith(b'data: '): if line == b'data: [DONE]': break try: content = json.loads(line[6:].decode('utf-8')) response_text = content['response'] if not any(token in response_text for token in skip_tokens): filtered_response += response_text except Exception: continue yield filtered_response.strip() break except Exception as e: if attempt == max_retries - 1: raise