gpt4free/g4f/Provider/Blackbox.py
kqlio67 ca2b609e82
Add support for multiple AI models and enhance agent functionality in Blackbox provider (#2484)
* refactor(g4f/Provider/Airforce.py): improve model handling and filtering

- Add hidden_models set to exclude specific models
- Add evil alias for uncensored model handling
- Extend filtering for model-specific response tokens
- Add response buffering for streamed content
- Update model fetching with error handling

* refactor(g4f/Provider/Blackbox.py): improve caching and model handling

- Add caching system for validated values with file-based storage
- Rename 'flux' model to 'ImageGeneration' and update references
- Add temperature, top_p and max_tokens parameters to generator
- Simplify HTTP headers and remove redundant options
- Add model alias mapping for ImageGeneration
- Add file system utilities for cache management

* feat(g4f/Provider/RobocodersAPI.py): add caching and error handling

- Add file-based caching system for access tokens and sessions
- Add robust error handling with specific error messages
- Add automatic dialog continuation on resource limits
- Add HTML parsing with BeautifulSoup for token extraction
- Add debug logging for error tracking
- Add timeout configuration for API requests

* refactor(g4f/Provider/DarkAI.py): update DarkAI default model and aliases

- Change default model from llama-3-405b to llama-3-70b
- Remove llama-3-405b from supported models list
- Remove llama-3.1-405b from model aliases

* feat(g4f/Provider/Blackbox2.py): add image generation support

- Add image model 'flux' with dedicated API endpoint
- Refactor generator to support both text and image outputs
- Extract headers into reusable static method
- Add type hints for AsyncGenerator return type
- Split generation logic into _generate_text and _generate_image methods
- Add ImageResponse handling for image generation results

BREAKING CHANGE: create_async_generator now returns AsyncGenerator instead of AsyncResult

* refactor(g4f/Provider/ChatGptEs.py): update ChatGptEs model configuration

- Update models list to include gpt-3.5-turbo
- Remove chatgpt-4o-latest from supported models
- Remove model_aliases mapping for gpt-4o

* feat(g4f/Provider/DeepInfraChat.py): add Accept-Language header support

- Add Accept-Language header for internationalization
- Maintain existing header configuration
- Improve request compatibility with language preferences

* refactor(g4f/Provider/needs_auth/Gemini.py): add ProviderModelMixin inheritance

- Add ProviderModelMixin to class inheritance
- Import ProviderModelMixin from base_provider
- Move BaseConversation import to base_provider imports

* refactor(g4f/Provider/Liaobots.py): update model details and aliases

- Add version suffix to o1 model IDs
- Update model aliases for o1-preview and o1-mini
- Standardize version format across model definitions

* refactor(g4f/Provider/PollinationsAI.py): enhance model support and generation

- Split generation logic into dedicated image/text methods
- Add additional text models including sur and claude
- Add width/height parameters for image generation
- Add model existence validation
- Add hasattr checks for model lists initialization

* chore(gitignore): add provider cache directory

- Add g4f/Provider/.cache to gitignore patterns

* refactor(g4f/Provider/ReplicateHome.py): update model configuration

- Update default model to gemma-2b-it
- Add default_image_model configuration
- Remove llava-13b from supported models
- Simplify request headers

* feat(g4f/models.py): expand provider and model support

- Add new providers DarkAI and PollinationsAI
- Add new models for Mistral, Flux and image generation
- Update provider lists for existing models
- Add P1 and Evil models with experimental providers

BREAKING CHANGE: Remove llava-13b model support

* refactor(Airforce): Update type hint for split_message return

- Change return type of  from  to  for consistency with import.
- Maintain overall functionality and structure of the  class.
- Ensure compatibility with type hinting standards in Python.

* refactor(g4f/Provider/Airforce.py): Update type hint for split_message return

- Change return type of 'split_message' from 'list[str]' to 'List[str]' for consistency with import.
- Maintain overall functionality and structure of the 'Airforce' class.
- Ensure compatibility with type hinting standards in Python.

* feat(g4f/Provider/RobocodersAPI.py): Add support for optional BeautifulSoup dependency

- Introduce a check for the BeautifulSoup library and handle its absence gracefully.
- Raise a  if BeautifulSoup is not installed, prompting the user to install it.
- Remove direct import of BeautifulSoup to avoid import errors when the library is missing.

* fix: Updating provider documentation and small fixes in providers

* Disabled the provider (RobocodersAPI)

* Fix: Conflicting file g4f/models.py

* Update g4f/models.py g4f/Provider/Airforce.py

* Update docs/providers-and-models.md g4f/models.py g4f/Provider/Airforce.py g4f/Provider/PollinationsAI.py

* Update docs/providers-and-models.md

* Update .gitignore

* Update g4f/models.py

* Update g4f/Provider/PollinationsAI.py

* feat(g4f/Provider/Blackbox.py): add support for additional AI models and agents

- Introduce new agent modes for Meta-Llama, Mistral, DeepSeek, DBRX, Qwen, and Nous-Hermes
- Update model aliases to include newly supported models

* Update (g4f/Provider/Blackbox.py)

* Update (g4f/Provider/Blackbox.py)

* feat(g4f/Provider/Blackbox2.py): add license key caching and validation

- Add cache file management for license key persistence
- Implement async license key extraction from JavaScript files
- Add license key validation to text generation requests
- Update type hints for async generators
- Add error handling for cache file operations

Breaking changes:
- Text generation now requires license key validation

---------

Co-authored-by: kqlio67 <>
2024-12-15 23:27:10 +01:00

303 lines
13 KiB
Python

from __future__ import annotations
from aiohttp import ClientSession
import random
import string
import json
import re
import aiohttp
import json
from pathlib import Path
from ..typing import AsyncResult, Messages, ImagesType
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..image import ImageResponse, to_data_uri
from ..cookies import get_cookies_dir
from .helper import format_prompt
class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
label = "Blackbox AI"
url = "https://www.blackbox.ai"
api_endpoint = "https://www.blackbox.ai/api/chat"
working = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'blackboxai'
default_vision_model = default_model
default_image_model = 'flux'
image_models = ['ImageGeneration', 'repomap']
vision_models = [default_model, 'gpt-4o', 'gemini-pro', 'gemini-1.5-flash', 'llama-3.1-8b', 'llama-3.1-70b', 'llama-3.1-405b']
userSelectedModel = ['gpt-4o', 'gemini-pro', 'claude-sonnet-3.5', 'blackboxai-pro']
agentMode = {
'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
'meta-llama/Llama-3.3-70B-Instruct-Turbo': {'mode': True, 'id': "meta-llama/Llama-3.3-70B-Instruct-Turbo", 'name': "Meta-Llama-3.3-70B-Instruct-Turbo"},
'mistralai/Mistral-7B-Instruct-v0.2': {'mode': True, 'id': "mistralai/Mistral-7B-Instruct-v0.2", 'name': "Mistral-(7B)-Instruct-v0.2"},
'deepseek-ai/deepseek-llm-67b-chat': {'mode': True, 'id': "deepseek-ai/deepseek-llm-67b-chat", 'name': "DeepSeek-LLM-Chat-(67B)"},
'databricks/dbrx-instruct': {'mode': True, 'id': "databricks/dbrx-instruct", 'name': "DBRX-Instruct"},
'meta-llama/Meta-Llama-3.1-405B-Instruct-Lite-Pro': {'mode': True, 'id': "meta-llama/Meta-Llama-3.1-405B-Instruct-Lite-Pro", 'name': "Meta-Llama-3.1-405B-Instruct-Turbo"}, #
'Qwen/QwQ-32B-Preview': {'mode': True, 'id': "Qwen/QwQ-32B-Preview", 'name': "Qwen-QwQ-32B-Preview"},
'NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO': {'mode': True, 'id': "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", 'name': "Nous-Hermes-2-Mixtral-8x7B-DPO"}
}
trendingAgentMode = {
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
"llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405"},
#
'Python Agent': {'mode': True, 'id': "Python Agent"},
'Java Agent': {'mode': True, 'id': "Java Agent"},
'JavaScript Agent': {'mode': True, 'id': "JavaScript Agent"},
'HTML Agent': {'mode': True, 'id': "HTML Agent"},
'Google Cloud Agent': {'mode': True, 'id': "Google Cloud Agent"},
'Android Developer': {'mode': True, 'id': "Android Developer"},
'Swift Developer': {'mode': True, 'id': "Swift Developer"},
'Next.js Agent': {'mode': True, 'id': "Next.js Agent"},
'MongoDB Agent': {'mode': True, 'id': "MongoDB Agent"},
'PyTorch Agent': {'mode': True, 'id': "PyTorch Agent"},
'React Agent': {'mode': True, 'id': "React Agent"},
'Xcode Agent': {'mode': True, 'id': "Xcode Agent"},
'AngularJS Agent': {'mode': True, 'id': "AngularJS Agent"},
#
'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
#
'repomap': {'mode': True, 'id': "repomap"},
#
'Heroku Agent': {'mode': True, 'id': "Heroku Agent"},
'Godot Agent': {'mode': True, 'id': "Godot Agent"},
'Go Agent': {'mode': True, 'id': "Go Agent"},
'Gitlab Agent': {'mode': True, 'id': "Gitlab Agent"},
'Git Agent': {'mode': True, 'id': "Git Agent"},
'Flask Agent': {'mode': True, 'id': "Flask Agent"},
'Firebase Agent': {'mode': True, 'id': "Firebase Agent"},
'FastAPI Agent': {'mode': True, 'id': "FastAPI Agent"},
'Erlang Agent': {'mode': True, 'id': "Erlang Agent"},
'Electron Agent': {'mode': True, 'id': "Electron Agent"},
'Docker Agent': {'mode': True, 'id': "Docker Agent"},
'DigitalOcean Agent': {'mode': True, 'id': "DigitalOcean Agent"},
'Bitbucket Agent': {'mode': True, 'id': "Bitbucket Agent"},
'Azure Agent': {'mode': True, 'id': "Azure Agent"},
'Flutter Agent': {'mode': True, 'id': "Flutter Agent"},
'Youtube Agent': {'mode': True, 'id': "Youtube Agent"},
'builder Agent': {'mode': True, 'id': "builder Agent"},
}
additional_prefixes = {
'gpt-4o': '@GPT-4o',
'gemini-pro': '@Gemini-PRO',
'claude-sonnet-3.5': '@Claude-Sonnet-3.5'
}
model_prefixes = {
**{
mode: f"@{value['id']}" for mode, value in trendingAgentMode.items()
if mode not in ["gemini-1.5-flash", "llama-3.1-8b", "llama-3.1-70b", "llama-3.1-405b", "repomap"]
},
**additional_prefixes
}
models = list(dict.fromkeys([default_model, *userSelectedModel, *list(agentMode.keys()), *list(trendingAgentMode.keys())]))
model_aliases = {
### chat ###
"gpt-4": "gpt-4o",
"gemini-flash": "gemini-1.5-flash",
"claude-3.5-sonnet": "claude-sonnet-3.5",
"llama-3.3-70b": "meta-llama/Llama-3.3-70B-Instruct-Turbo",
"mixtral-7b": "mistralai/Mistral-7B-Instruct-v0.2",
"deepseek-chat": "deepseek-ai/deepseek-llm-67b-chat",
"dbrx-instruct": "databricks/dbrx-instruct",
"llama-3.1-405b": "meta-llama/Meta-Llama-3.1-405B-Instruct-Lite-Pro",
"qwq-32b": "Qwen/QwQ-32B-Preview",
"hermes-2-dpo": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
### image ###
"flux": "ImageGeneration",
}
@classmethod
def _get_cache_file(cls) -> Path:
dir = Path(get_cookies_dir())
dir.mkdir(exist_ok=True)
return dir / 'blackbox.json'
@classmethod
def _load_cached_value(cls) -> str | None:
cache_file = cls._get_cache_file()
if cache_file.exists():
try:
with open(cache_file, 'r') as f:
data = json.load(f)
return data.get('validated_value')
except Exception as e:
print(f"Error reading cache file: {e}")
return None
@classmethod
def _save_cached_value(cls, value: str):
cache_file = cls._get_cache_file()
try:
with open(cache_file, 'w') as f:
json.dump({'validated_value': value}, f)
except Exception as e:
print(f"Error writing to cache file: {e}")
@classmethod
async def fetch_validated(cls):
# Let's try to load the value from the cache first
cached_value = cls._load_cached_value()
if cached_value:
return cached_value
async with aiohttp.ClientSession() as session:
try:
async with session.get(cls.url) as response:
if response.status != 200:
print("Failed to load the page.")
return cached_value
page_content = await response.text()
js_files = re.findall(r'static/chunks/\d{4}-[a-fA-F0-9]+\.js', page_content)
key_pattern = re.compile(r'w="([0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12})"')
for js_file in js_files:
js_url = f"{cls.url}/_next/{js_file}"
async with session.get(js_url) as js_response:
if js_response.status == 200:
js_content = await js_response.text()
match = key_pattern.search(js_content)
if match:
validated_value = match.group(1)
# Save the new value to the cache file
cls._save_cached_value(validated_value)
return validated_value
except Exception as e:
print(f"Error fetching validated value: {e}")
return cached_value
@staticmethod
def generate_id(length=7):
characters = string.ascii_letters + string.digits
return ''.join(random.choice(characters) for _ in range(length))
@classmethod
def add_prefix_to_messages(cls, messages: Messages, model: str) -> Messages:
prefix = cls.model_prefixes.get(model, "")
if not prefix:
return messages
new_messages = []
for message in messages:
new_message = message.copy()
if message['role'] == 'user':
new_message['content'] = (prefix + " " + message['content']).strip()
new_messages.append(new_message)
return new_messages
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
prompt: str = None,
proxy: str = None,
web_search: bool = False,
images: ImagesType = None,
top_p: float = None,
temperature: float = None,
max_tokens: int = None,
**kwargs
) -> AsyncResult:
message_id = cls.generate_id()
messages = cls.add_prefix_to_messages(messages, model)
validated_value = await cls.fetch_validated()
formatted_message = format_prompt(messages)
model = cls.get_model(model)
messages = [{"id": message_id, "content": formatted_message, "role": "user"}]
if images is not None:
messages[-1]['data'] = {
"imagesData": [
{
"filePath": f"MultipleFiles/{image_name}",
"contents": to_data_uri(image)
}
for image, image_name in images
],
"fileText": "",
"title": ""
}
headers = {
'accept': '*/*',
'content-type': 'application/json',
'origin': cls.url,
'referer': f'{cls.url}/',
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36'
}
data = {
"agentMode": cls.agentMode.get(model, {}) if model in cls.agentMode else {},
"clickedAnswer2": False,
"clickedAnswer3": False,
"clickedForceWebSearch": False,
"codeModelMode": True,
"deepSearchMode": False,
"githubToken": None,
"id": message_id,
"imageGenerationMode": False,
"isChromeExt": False,
"isMicMode": False,
"maxTokens": max_tokens,
"messages": messages,
"mobileClient": False,
"playgroundTemperature": temperature,
"playgroundTopP": top_p,
"previewToken": None,
"trendingAgentMode": cls.trendingAgentMode.get(model, {}) if model in cls.trendingAgentMode else {},
"userId": None,
"userSelectedModel": model if model in cls.userSelectedModel else None,
"userSystemPrompt": None,
"validated": validated_value,
"visitFromDelta": False,
"webSearchModePrompt": False,
"webSearchMode": web_search
}
async with ClientSession(headers=headers) as session:
async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
response.raise_for_status()
response_text = await response.text()
if model in cls.image_models:
image_matches = re.findall(r'!\[.*?\]\((https?://[^\)]+)\)', response_text)
if image_matches:
image_url = image_matches[0]
yield ImageResponse(image_url, prompt)
return
response_text = re.sub(r'Generated by BLACKBOX.AI, try unlimited chat https://www.blackbox.ai', '', response_text, flags=re.DOTALL)
json_match = re.search(r'\$~~~\$(.*?)\$~~~\$', response_text, re.DOTALL)
if json_match:
search_results = json.loads(json_match.group(1))
answer = response_text.split('$~~~$')[-1].strip()
formatted_response = f"{answer}\n\n**Source:**"
for i, result in enumerate(search_results, 1):
formatted_response += f"\n{i}. {result['title']}: {result['link']}"
yield formatted_response
else:
yield response_text.strip()