gpt4free/g4f/client.py
2024-02-23 11:36:57 +01:00

210 lines
7.4 KiB
Python

from __future__ import annotations
import re
import os
import time
import random
import string
from .stubs import ChatCompletion, ChatCompletionChunk, Image, ImagesResponse
from .typing import Union, Generator, Messages, ImageType
from .providers.types import BaseProvider, ProviderType
from .image import ImageResponse as ImageProviderResponse
from .Provider.BingCreateImages import BingCreateImages
from .Provider.needs_auth import Gemini, OpenaiChat
from .errors import NoImageResponseError
from . import get_model_and_provider, get_last_provider
ImageProvider = Union[BaseProvider, object]
Proxies = Union[dict, str]
IterResponse = Generator[Union[ChatCompletion, ChatCompletionChunk], None, None]
def read_json(text: str) -> dict:
"""
Parses JSON code block from a string.
Args:
text (str): A string containing a JSON code block.
Returns:
dict: A dictionary parsed from the JSON code block.
"""
match = re.search(r"```(json|)\n(?P<code>[\S\s]+?)\n```", text)
if match:
return match.group("code")
return text
def iter_response(
response: iter[str],
stream: bool,
response_format: dict = None,
max_tokens: int = None,
stop: list = None
) -> IterResponse:
content = ""
finish_reason = None
completion_id = ''.join(random.choices(string.ascii_letters + string.digits, k=28))
for idx, chunk in enumerate(response):
content += str(chunk)
if max_tokens is not None and idx + 1 >= max_tokens:
finish_reason = "length"
first = -1
word = None
if stop is not None:
for word in list(stop):
first = content.find(word)
if first != -1:
content = content[:first]
break
if stream and first != -1:
first = chunk.find(word)
if first != -1:
chunk = chunk[:first]
else:
first = 0
if first != -1:
finish_reason = "stop"
if stream:
yield ChatCompletionChunk(chunk, None, completion_id, int(time.time()))
if finish_reason is not None:
break
finish_reason = "stop" if finish_reason is None else finish_reason
if stream:
yield ChatCompletionChunk(None, finish_reason, completion_id, int(time.time()))
else:
if response_format is not None and "type" in response_format:
if response_format["type"] == "json_object":
content = read_json(content)
yield ChatCompletion(content, finish_reason, completion_id, int(time.time()))
def iter_append_model_and_provider(response: IterResponse) -> IterResponse:
last_provider = None
for chunk in response:
last_provider = get_last_provider(True) if last_provider is None else last_provider
chunk.model = last_provider.get("model")
chunk.provider = last_provider.get("name")
yield chunk
class Client():
def __init__(
self,
api_key: str = None,
proxies: Proxies = None,
provider: ProviderType = None,
image_provider: ImageProvider = None,
**kwargs
) -> None:
self.api_key: str = api_key
self.proxies: Proxies = proxies
self.chat: Chat = Chat(self, provider)
self.images: Images = Images(self, image_provider)
def get_proxy(self) -> Union[str, None]:
if isinstance(self.proxies, str):
return self.proxies
elif self.proxies is None:
return os.environ.get("G4F_PROXY")
elif "all" in self.proxies:
return self.proxies["all"]
elif "https" in self.proxies:
return self.proxies["https"]
class Completions():
def __init__(self, client: Client, provider: ProviderType = None):
self.client: Client = client
self.provider: ProviderType = provider
def create(
self,
messages: Messages,
model: str,
provider: ProviderType = None,
stream: bool = False,
response_format: dict = None,
max_tokens: int = None,
stop: Union[list[str], str] = None,
api_key: str = None,
**kwargs
) -> Union[ChatCompletion, Generator[ChatCompletionChunk]]:
model, provider = get_model_and_provider(
model,
self.provider if provider is None else provider,
stream,
**kwargs
)
stop = [stop] if isinstance(stop, str) else stop
response = provider.create_completion(
model, messages, stream,
proxy=self.client.get_proxy(),
max_tokens=max_tokens,
stop=stop,
api_key=self.client.api_key if api_key is None else api_key,
**kwargs
)
response = iter_response(response, stream, response_format, max_tokens, stop)
response = iter_append_model_and_provider(response)
return response if stream else next(response)
class Chat():
completions: Completions
def __init__(self, client: Client, provider: ProviderType = None):
self.completions = Completions(client, provider)
class ImageModels():
gemini = Gemini
openai = OpenaiChat
def __init__(self, client: Client) -> None:
self.client = client
self.default = BingCreateImages(proxy=self.client.get_proxy())
def get(self, name: str, default: ImageProvider = None) -> ImageProvider:
return getattr(self, name) if hasattr(self, name) else default or self.default
class Images():
def __init__(self, client: Client, provider: ImageProvider = None):
self.client: Client = client
self.provider: ImageProvider = provider
self.models: ImageModels = ImageModels(client)
def generate(self, prompt, model: str = None, **kwargs):
provider = self.models.get(model, self.provider)
if isinstance(provider, BaseProvider) or isinstance(provider, type) and issubclass(provider, BaseProvider):
prompt = f"create a image: {prompt}"
response = provider.create_completion(
"",
[{"role": "user", "content": prompt}],
True,
proxy=self.client.get_proxy(),
**kwargs
)
else:
response = provider.create(prompt)
for chunk in response:
if isinstance(chunk, ImageProviderResponse):
images = [chunk.images] if isinstance(chunk.images, str) else chunk.images
return ImagesResponse([Image(image) for image in images])
raise NoImageResponseError()
def create_variation(self, image: ImageType, model: str = None, **kwargs):
provider = self.models.get(model, self.provider)
result = None
if isinstance(provider, type) and issubclass(provider, BaseProvider):
response = provider.create_completion(
"",
[{"role": "user", "content": "create a image like this"}],
True,
image=image,
proxy=self.client.get_proxy(),
**kwargs
)
for chunk in response:
if isinstance(chunk, ImageProviderResponse):
result = ([chunk.images] if isinstance(chunk.images, str) else chunk.images)
result = ImagesResponse([Image(image)for image in result])
if result is None:
raise NoImageResponseError()
return result