mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-12-25 12:16:17 +03:00
6ce493d4df
* Fix api streaming, fix AsyncClient, Improve Client class, Some providers fixes, Update models list, Fix some tests, Update model list in Airforce provid er, Add OpenAi image generation url to api, Fix reload and debug in api arguments, Fix websearch in gui * Fix Cloadflare and Pi and AmigoChat provider * Fix conversation support in DDG provider, Add cloudflare bypass with nodriver * Fix unittests without curl_cffi
177 lines
7.1 KiB
Python
177 lines
7.1 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
import uuid
|
|
|
|
from ..typing import AsyncResult, Messages
|
|
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
|
|
from ..image import ImageResponse
|
|
from ..requests import StreamSession, raise_for_status
|
|
from ..errors import ResponseStatusError
|
|
|
|
class AmigoChat(AsyncGeneratorProvider, ProviderModelMixin):
|
|
url = "https://amigochat.io/chat/"
|
|
chat_api_endpoint = "https://api.amigochat.io/v1/chat/completions"
|
|
image_api_endpoint = "https://api.amigochat.io/v1/images/generations"
|
|
working = True
|
|
supports_stream = True
|
|
supports_system_message = True
|
|
supports_message_history = True
|
|
|
|
default_model = 'gpt-4o-mini'
|
|
|
|
chat_models = [
|
|
'gpt-4o',
|
|
default_model,
|
|
'o1-preview',
|
|
'o1-mini',
|
|
'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo',
|
|
'meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo',
|
|
'claude-3-sonnet-20240229',
|
|
'gemini-1.5-pro',
|
|
]
|
|
|
|
image_models = [
|
|
'flux-pro/v1.1',
|
|
'flux-realism',
|
|
'flux-pro',
|
|
'dalle-e-3',
|
|
]
|
|
|
|
models = [*chat_models, *image_models]
|
|
|
|
model_aliases = {
|
|
"o1": "o1-preview",
|
|
"llama-3.1-405b": "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
|
|
"llama-3.2-90b": "meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo",
|
|
"claude-3.5-sonnet": "claude-3-sonnet-20240229",
|
|
"gemini-pro": "gemini-1.5-pro",
|
|
|
|
"flux-pro": "flux-pro/v1.1",
|
|
"dalle-3": "dalle-e-3",
|
|
}
|
|
|
|
persona_ids = {
|
|
'gpt-4o': "gpt",
|
|
'gpt-4o-mini': "amigo",
|
|
'o1-preview': "openai-o-one",
|
|
'o1-mini': "openai-o-one-mini",
|
|
'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo': "llama-three-point-one",
|
|
'meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo': "llama-3-2",
|
|
'claude-3-sonnet-20240229': "claude",
|
|
'gemini-1.5-pro': "gemini-1-5-pro",
|
|
'flux-pro/v1.1': "flux-1-1-pro",
|
|
'flux-realism': "flux-realism",
|
|
'flux-pro': "flux-pro",
|
|
'dalle-e-3': "dalle-three",
|
|
}
|
|
|
|
@classmethod
|
|
def get_personaId(cls, model: str) -> str:
|
|
return cls.persona_ids[model]
|
|
|
|
@classmethod
|
|
async def create_async_generator(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
proxy: str = None,
|
|
stream: bool = False,
|
|
timeout: int = 300,
|
|
frequency_penalty: float = 0,
|
|
max_tokens: int = 4000,
|
|
presence_penalty: float = 0,
|
|
temperature: float = 0.5,
|
|
top_p: float = 0.95,
|
|
**kwargs
|
|
) -> AsyncResult:
|
|
model = cls.get_model(model)
|
|
|
|
device_uuid = str(uuid.uuid4())
|
|
max_retries = 3
|
|
retry_count = 0
|
|
|
|
while retry_count < max_retries:
|
|
try:
|
|
headers = {
|
|
"accept": "*/*",
|
|
"accept-language": "en-US,en;q=0.9",
|
|
"authorization": "Bearer",
|
|
"cache-control": "no-cache",
|
|
"content-type": "application/json",
|
|
"origin": cls.url,
|
|
"pragma": "no-cache",
|
|
"priority": "u=1, i",
|
|
"referer": f"{cls.url}/",
|
|
"sec-ch-ua": '"Chromium";v="129", "Not=A?Brand";v="8"',
|
|
"sec-ch-ua-mobile": "?0",
|
|
"sec-ch-ua-platform": '"Linux"',
|
|
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36",
|
|
"x-device-language": "en-US",
|
|
"x-device-platform": "web",
|
|
"x-device-uuid": device_uuid,
|
|
"x-device-version": "1.0.41"
|
|
}
|
|
|
|
async with StreamSession(headers=headers, proxy=proxy) as session:
|
|
if model not in cls.image_models:
|
|
data = {
|
|
"messages": messages,
|
|
"model": model,
|
|
"personaId": cls.get_personaId(model),
|
|
"frequency_penalty": frequency_penalty,
|
|
"max_tokens": max_tokens,
|
|
"presence_penalty": presence_penalty,
|
|
"stream": stream,
|
|
"temperature": temperature,
|
|
"top_p": top_p
|
|
}
|
|
async with session.post(cls.chat_api_endpoint, json=data, timeout=timeout) as response:
|
|
await raise_for_status(response)
|
|
async for line in response.iter_lines():
|
|
line = line.decode('utf-8').strip()
|
|
if line.startswith('data: '):
|
|
if line == 'data: [DONE]':
|
|
break
|
|
try:
|
|
chunk = json.loads(line[6:]) # Remove 'data: ' prefix
|
|
if 'choices' in chunk and len(chunk['choices']) > 0:
|
|
choice = chunk['choices'][0]
|
|
if 'delta' in choice:
|
|
content = choice['delta'].get('content')
|
|
elif 'text' in choice:
|
|
content = choice['text']
|
|
else:
|
|
content = None
|
|
if content:
|
|
yield content
|
|
except json.JSONDecodeError:
|
|
pass
|
|
else:
|
|
# Image generation
|
|
prompt = messages[-1]['content']
|
|
data = {
|
|
"prompt": prompt,
|
|
"model": model,
|
|
"personaId": cls.get_personaId(model)
|
|
}
|
|
async with session.post(cls.image_api_endpoint, json=data) as response:
|
|
await raise_for_status(response)
|
|
response_data = await response.json()
|
|
if "data" in response_data:
|
|
image_urls = []
|
|
for item in response_data["data"]:
|
|
if "url" in item:
|
|
image_url = item["url"]
|
|
image_urls.append(image_url)
|
|
if image_urls:
|
|
yield ImageResponse(image_urls, prompt)
|
|
else:
|
|
yield None
|
|
break
|
|
except (ResponseStatusError, Exception) as e:
|
|
retry_count += 1
|
|
if retry_count >= max_retries:
|
|
raise e
|
|
device_uuid = str(uuid.uuid4())
|