mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-12-25 04:01:52 +03:00
30b9707657
https://api.airforce/imagine2?model=flux-4o https://api.airforce/imagine2?model=flux-schnell and https://api.airforce/imagine2?model=flux-1.1-pro all generate same images but "Flux-1.1-Pro" doesnt work
214 lines
7.5 KiB
Python
214 lines
7.5 KiB
Python
from __future__ import annotations
|
|
|
|
import random
|
|
import json
|
|
import re
|
|
|
|
import requests
|
|
from requests.packages.urllib3.exceptions import InsecureRequestWarning
|
|
requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
|
|
|
|
from ..typing import AsyncResult, Messages
|
|
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
|
|
from ..image import ImageResponse
|
|
from ..requests import StreamSession, raise_for_status
|
|
|
|
class Airforce(AsyncGeneratorProvider, ProviderModelMixin):
|
|
url = "https://llmplayground.net"
|
|
api_endpoint_completions = "https://api.airforce/chat/completions"
|
|
api_endpoint_imagine = "https://api.airforce/imagine2"
|
|
working = True
|
|
supports_system_message = True
|
|
supports_message_history = True
|
|
|
|
@classmethod
|
|
def fetch_completions_models(cls):
|
|
response = requests.get('https://api.airforce/models', verify=False)
|
|
response.raise_for_status()
|
|
data = response.json()
|
|
return [model['id'] for model in data['data']]
|
|
|
|
@classmethod
|
|
def fetch_imagine_models(cls):
|
|
response = requests.get('https://api.airforce/imagine/models', verify=False)
|
|
response.raise_for_status()
|
|
return response.json()
|
|
|
|
default_model = "gpt-4o-mini"
|
|
default_image_model = "flux"
|
|
additional_models_imagine = ["stable-diffusion-xl-base", "stable-diffusion-xl-lightning", "flux-1.1-pro"]
|
|
|
|
@classmethod
|
|
def get_models(cls):
|
|
if not cls.models:
|
|
cls.image_models = [*cls.fetch_imagine_models(), *cls.additional_models_imagine]
|
|
cls.models = [
|
|
*cls.fetch_completions_models(),
|
|
*cls.image_models
|
|
]
|
|
return cls.models
|
|
|
|
model_aliases = {
|
|
### completions ###
|
|
# openchat
|
|
"openchat-3.5": "openchat-3.5-0106",
|
|
|
|
# deepseek-ai
|
|
"deepseek-coder": "deepseek-coder-6.7b-instruct",
|
|
|
|
# NousResearch
|
|
"hermes-2-dpo": "Nous-Hermes-2-Mixtral-8x7B-DPO",
|
|
"hermes-2-pro": "hermes-2-pro-mistral-7b",
|
|
|
|
# teknium
|
|
"openhermes-2.5": "openhermes-2.5-mistral-7b",
|
|
|
|
# liquid
|
|
"lfm-40b": "lfm-40b-moe",
|
|
|
|
# DiscoResearch
|
|
"german-7b": "discolm-german-7b-v1",
|
|
|
|
# meta-llama
|
|
"llama-2-7b": "llama-2-7b-chat-int8",
|
|
"llama-2-7b": "llama-2-7b-chat-fp16",
|
|
"llama-3.1-70b": "llama-3.1-70b-chat",
|
|
"llama-3.1-8b": "llama-3.1-8b-chat",
|
|
"llama-3.1-70b": "llama-3.1-70b-turbo",
|
|
"llama-3.1-8b": "llama-3.1-8b-turbo",
|
|
|
|
# inferless
|
|
"neural-7b": "neural-chat-7b-v3-1",
|
|
|
|
# HuggingFaceH4
|
|
"zephyr-7b": "zephyr-7b-beta",
|
|
|
|
### imagine ###
|
|
"sdxl": "stable-diffusion-xl-base",
|
|
"sdxl": "stable-diffusion-xl-lightning",
|
|
"flux-pro": "flux-1.1-pro",
|
|
}
|
|
|
|
@classmethod
|
|
def create_async_generator(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
proxy: str = None,
|
|
seed: int = None,
|
|
size: str = "1:1", # "1:1", "16:9", "9:16", "21:9", "9:21", "1:2", "2:1"
|
|
stream: bool = False,
|
|
**kwargs
|
|
) -> AsyncResult:
|
|
model = cls.get_model(model)
|
|
if model in cls.image_models:
|
|
return cls._generate_image(model, messages, proxy, seed, size)
|
|
else:
|
|
return cls._generate_text(model, messages, proxy, stream, **kwargs)
|
|
|
|
@classmethod
|
|
async def _generate_image(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
proxy: str = None,
|
|
seed: int = None,
|
|
size: str = "1:1",
|
|
**kwargs
|
|
) -> AsyncResult:
|
|
headers = {
|
|
"accept": "*/*",
|
|
"accept-language": "en-US,en;q=0.9",
|
|
"cache-control": "no-cache",
|
|
"origin": "https://llmplayground.net",
|
|
"user-agent": "Mozilla/5.0"
|
|
}
|
|
if seed is None:
|
|
seed = random.randint(0, 100000)
|
|
prompt = messages[-1]['content']
|
|
|
|
async with StreamSession(headers=headers, proxy=proxy) as session:
|
|
params = {
|
|
"model": model,
|
|
"prompt": prompt,
|
|
"size": size,
|
|
"seed": seed
|
|
}
|
|
async with session.get(f"{cls.api_endpoint_imagine}", params=params) as response:
|
|
await raise_for_status(response)
|
|
content_type = response.headers.get('Content-Type', '').lower()
|
|
|
|
if 'application/json' in content_type:
|
|
raise RuntimeError(await response.json().get("error", {}).get("message"))
|
|
elif 'image' in content_type:
|
|
image_data = b""
|
|
async for chunk in response.iter_content():
|
|
if chunk:
|
|
image_data += chunk
|
|
image_url = f"{cls.api_endpoint_imagine}?model={model}&prompt={prompt}&size={size}&seed={seed}"
|
|
yield ImageResponse(images=image_url, alt=prompt)
|
|
|
|
@classmethod
|
|
async def _generate_text(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
proxy: str = None,
|
|
stream: bool = False,
|
|
max_tokens: int = 4096,
|
|
temperature: float = 1,
|
|
top_p: float = 1,
|
|
**kwargs
|
|
) -> AsyncResult:
|
|
headers = {
|
|
"accept": "*/*",
|
|
"accept-language": "en-US,en;q=0.9",
|
|
"authorization": "Bearer missing api key",
|
|
"content-type": "application/json",
|
|
"user-agent": "Mozilla/5.0"
|
|
}
|
|
async with StreamSession(headers=headers, proxy=proxy) as session:
|
|
data = {
|
|
"messages": messages,
|
|
"model": model,
|
|
"max_tokens": max_tokens,
|
|
"temperature": temperature,
|
|
"top_p": top_p,
|
|
"stream": stream
|
|
}
|
|
async with session.post(cls.api_endpoint_completions, json=data) as response:
|
|
await raise_for_status(response)
|
|
content_type = response.headers.get('Content-Type', '').lower()
|
|
if 'application/json' in content_type:
|
|
json_data = await response.json()
|
|
if json_data.get("model") == "error":
|
|
raise RuntimeError(json_data['choices'][0]['message'].get('content', ''))
|
|
if stream:
|
|
async for line in response.iter_lines():
|
|
if line:
|
|
line = line.decode('utf-8').strip()
|
|
if line.startswith("data: ") and line != "data: [DONE]":
|
|
json_data = json.loads(line[6:])
|
|
content = json_data['choices'][0]['delta'].get('content', '')
|
|
if content:
|
|
yield cls._filter_content(content)
|
|
else:
|
|
json_data = await response.json()
|
|
content = json_data['choices'][0]['message']['content']
|
|
yield cls._filter_content(content)
|
|
|
|
@classmethod
|
|
def _filter_content(cls, part_response: str) -> str:
|
|
part_response = re.sub(
|
|
r"One message exceeds the \d+chars per message limit\..+https:\/\/discord\.com\/invite\/\S+",
|
|
'',
|
|
part_response
|
|
)
|
|
|
|
part_response = re.sub(
|
|
r"Rate limit \(\d+\/minute\) exceeded\. Join our discord for more: .+https:\/\/discord\.com\/invite\/\S+",
|
|
'',
|
|
part_response
|
|
)
|
|
return part_response
|