mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-12-25 04:01:52 +03:00
168 lines
5.3 KiB
Python
168 lines
5.3 KiB
Python
from fastapi import FastAPI, Response, Request
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
from typing import List, Union, Any, Dict, AnyStr
|
|
from ._tokenizer import tokenize
|
|
import g4f
|
|
import time
|
|
import json
|
|
import random
|
|
import string
|
|
import uvicorn
|
|
import nest_asyncio
|
|
|
|
app = FastAPI()
|
|
nest_asyncio.apply()
|
|
|
|
origins = [
|
|
"http://localhost",
|
|
"http://localhost:1337",
|
|
]
|
|
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=origins,
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
|
|
JSONObject = Dict[AnyStr, Any]
|
|
JSONArray = List[Any]
|
|
JSONStructure = Union[JSONArray, JSONObject]
|
|
|
|
@app.get("/")
|
|
async def read_root():
|
|
return Response(content=json.dumps({"info": "G4F API"}, indent=4), media_type="application/json")
|
|
|
|
@app.get("/v1")
|
|
async def read_root_v1():
|
|
return Response(content=json.dumps({"info": "Go to /v1/chat/completions or /v1/models."}, indent=4), media_type="application/json")
|
|
|
|
@app.get("/v1/models")
|
|
async def models():
|
|
model_list = [{
|
|
'id': model,
|
|
'object': 'model',
|
|
'created': 0,
|
|
'owned_by': 'g4f'} for model in g4f.Model.__all__()]
|
|
|
|
return Response(content=json.dumps({
|
|
'object': 'list',
|
|
'data': model_list}, indent=4), media_type="application/json")
|
|
|
|
@app.get("/v1/models/{model_name}")
|
|
async def model_info(model_name: str):
|
|
try:
|
|
model_info = (g4f.ModelUtils.convert[model_name])
|
|
|
|
return Response(content=json.dumps({
|
|
'id': model_name,
|
|
'object': 'model',
|
|
'created': 0,
|
|
'owned_by': model_info.base_provider
|
|
}, indent=4), media_type="application/json")
|
|
except:
|
|
return Response(content=json.dumps({"error": "The model does not exist."}, indent=4), media_type="application/json")
|
|
|
|
@app.post("/v1/chat/completions")
|
|
async def chat_completions(request: Request, item: JSONStructure = None):
|
|
|
|
item_data = {
|
|
'model': 'gpt-3.5-turbo',
|
|
'stream': False,
|
|
}
|
|
|
|
item_data.update(item or {})
|
|
model = item_data.get('model')
|
|
stream = item_data.get('stream')
|
|
messages = item_data.get('messages')
|
|
|
|
try:
|
|
response = g4f.ChatCompletion.create(model=model, stream=stream, messages=messages)
|
|
except:
|
|
return Response(content=json.dumps({"error": "An error occurred while generating the response."}, indent=4), media_type="application/json")
|
|
|
|
completion_id = ''.join(random.choices(string.ascii_letters + string.digits, k=28))
|
|
completion_timestamp = int(time.time())
|
|
|
|
if not stream:
|
|
prompt_tokens, _ = tokenize(''.join([message['content'] for message in messages]))
|
|
completion_tokens, _ = tokenize(response)
|
|
|
|
json_data = {
|
|
'id': f'chatcmpl-{completion_id}',
|
|
'object': 'chat.completion',
|
|
'created': completion_timestamp,
|
|
'model': model,
|
|
'choices': [
|
|
{
|
|
'index': 0,
|
|
'message': {
|
|
'role': 'assistant',
|
|
'content': response,
|
|
},
|
|
'finish_reason': 'stop',
|
|
}
|
|
],
|
|
'usage': {
|
|
'prompt_tokens': prompt_tokens,
|
|
'completion_tokens': completion_tokens,
|
|
'total_tokens': prompt_tokens + completion_tokens,
|
|
},
|
|
}
|
|
|
|
return Response(content=json.dumps(json_data, indent=4), media_type="application/json")
|
|
|
|
def streaming():
|
|
try:
|
|
for chunk in response:
|
|
completion_data = {
|
|
'id': f'chatcmpl-{completion_id}',
|
|
'object': 'chat.completion.chunk',
|
|
'created': completion_timestamp,
|
|
'model': model,
|
|
'choices': [
|
|
{
|
|
'index': 0,
|
|
'delta': {
|
|
'content': chunk,
|
|
},
|
|
'finish_reason': None,
|
|
}
|
|
],
|
|
}
|
|
|
|
content = json.dumps(completion_data, separators=(',', ':'))
|
|
yield f'data: {content}\n\n'
|
|
time.sleep(0.03)
|
|
|
|
end_completion_data = {
|
|
'id': f'chatcmpl-{completion_id}',
|
|
'object': 'chat.completion.chunk',
|
|
'created': completion_timestamp,
|
|
'model': model,
|
|
'choices': [
|
|
{
|
|
'index': 0,
|
|
'delta': {},
|
|
'finish_reason': 'stop',
|
|
}
|
|
],
|
|
}
|
|
|
|
content = json.dumps(end_completion_data, separators=(',', ':'))
|
|
yield f'data: {content}\n\n'
|
|
|
|
except GeneratorExit:
|
|
pass
|
|
|
|
return Response(content=json.dumps(streaming(), indent=4), media_type="application/json")
|
|
|
|
@app.post("/v1/completions")
|
|
async def completions():
|
|
return Response(content=json.dumps({'info': 'Not working yet.'}, indent=4), media_type="application/json")
|
|
|
|
def run(ip, thread_quantity):
|
|
split_ip = ip.split(":")
|
|
uvicorn.run(app, host=split_ip[0], port=int(split_ip[1]), use_colors=False, workers=thread_quantity)
|