gpt4free/g4f/Provider/HuggingChat.py
H Lohaus 6ce493d4df
Fix api streaming, fix AsyncClient (#2357)
* Fix api streaming, fix AsyncClient, Improve Client class, Some providers fixes, Update models list, Fix some tests, Update model list in Airforce provid
er, Add OpenAi image generation url to api, Fix reload and debug in api arguments, Fix websearch in gui

* Fix Cloadflare and Pi and AmigoChat provider

* Fix conversation support in DDG provider, Add cloudflare bypass with nodriver

* Fix unittests without curl_cffi
2024-11-16 13:19:51 +01:00

191 lines
7.3 KiB
Python

from __future__ import annotations
import json
import requests
try:
from curl_cffi import requests as cf_reqs
has_curl_cffi = True
except ImportError:
has_curl_cffi = False
from ..typing import CreateResult, Messages
from ..errors import MissingRequirementsError
from .base_provider import ProviderModelMixin, AbstractProvider
from .helper import format_prompt
class HuggingChat(AbstractProvider, ProviderModelMixin):
url = "https://huggingface.co/chat"
working = True
supports_stream = True
default_model = "meta-llama/Meta-Llama-3.1-70B-Instruct"
models = [
'meta-llama/Meta-Llama-3.1-70B-Instruct',
'CohereForAI/c4ai-command-r-plus-08-2024',
'Qwen/Qwen2.5-72B-Instruct',
'nvidia/Llama-3.1-Nemotron-70B-Instruct-HF',
'Qwen/Qwen2.5-Coder-32B-Instruct',
'meta-llama/Llama-3.2-11B-Vision-Instruct',
'NousResearch/Hermes-3-Llama-3.1-8B',
'mistralai/Mistral-Nemo-Instruct-2407',
'microsoft/Phi-3.5-mini-instruct',
]
model_aliases = {
"llama-3.1-70b": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"command-r-plus": "CohereForAI/c4ai-command-r-plus-08-2024",
"qwen-2-72b": "Qwen/Qwen2.5-72B-Instruct",
"nemotron-70b": "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
"qwen-2.5-coder-32b": "Qwen/Qwen2.5-Coder-32B-Instruct",
"llama-3.2-11b": "meta-llama/Llama-3.2-11B-Vision-Instruct",
"hermes-3": "NousResearch/Hermes-3-Llama-3.1-8B",
"mistral-nemo": "mistralai/Mistral-Nemo-Instruct-2407",
"phi-3.5-mini": "microsoft/Phi-3.5-mini-instruct",
}
@classmethod
def get_model(cls, model: str) -> str:
if model in cls.models:
return model
elif model in cls.model_aliases:
return cls.model_aliases[model]
else:
return cls.default_model
@classmethod
def create_completion(
cls,
model: str,
messages: Messages,
stream: bool,
**kwargs
) -> CreateResult:
if not has_curl_cffi:
raise MissingRequirementsError('Install "curl_cffi" package | pip install -U curl_cffi')
model = cls.get_model(model)
if model in cls.models:
session = cf_reqs.Session()
session.headers = {
'accept': '*/*',
'accept-language': 'en',
'cache-control': 'no-cache',
'origin': 'https://huggingface.co',
'pragma': 'no-cache',
'priority': 'u=1, i',
'referer': 'https://huggingface.co/chat/',
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"macOS"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
}
json_data = {
'model': model,
}
response = session.post('https://huggingface.co/chat/conversation', json=json_data)
if response.status_code != 200:
raise RuntimeError(f"Request failed with status code: {response.status_code}, response: {response.text}")
conversationId = response.json().get('conversationId')
# Get the data response and parse it properly
response = session.get(f'https://huggingface.co/chat/conversation/{conversationId}/__data.json?x-sveltekit-invalidated=11')
# Split the response content by newlines and parse each line as JSON
try:
json_data = None
for line in response.text.split('\n'):
if line.strip():
try:
parsed = json.loads(line)
if isinstance(parsed, dict) and "nodes" in parsed:
json_data = parsed
break
except json.JSONDecodeError:
continue
if not json_data:
raise RuntimeError("Failed to parse response data")
data: list = json_data["nodes"][1]["data"]
keys: list[int] = data[data[0]["messages"]]
message_keys: dict = data[keys[0]]
messageId: str = data[message_keys["id"]]
except (KeyError, IndexError, TypeError) as e:
raise RuntimeError(f"Failed to extract message ID: {str(e)}")
settings = {
"inputs": format_prompt(messages),
"id": messageId,
"is_retry": False,
"is_continue": False,
"web_search": False,
"tools": []
}
headers = {
'accept': '*/*',
'accept-language': 'en',
'cache-control': 'no-cache',
'origin': 'https://huggingface.co',
'pragma': 'no-cache',
'priority': 'u=1, i',
'referer': f'https://huggingface.co/chat/conversation/{conversationId}',
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"macOS"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
}
files = {
'data': (None, json.dumps(settings, separators=(',', ':'))),
}
response = requests.post(
f'https://huggingface.co/chat/conversation/{conversationId}',
cookies=session.cookies,
headers=headers,
files=files,
)
full_response = ""
for line in response.iter_lines():
if not line:
continue
try:
line = json.loads(line)
except json.JSONDecodeError as e:
print(f"Failed to decode JSON: {line}, error: {e}")
continue
if "type" not in line:
raise RuntimeError(f"Response: {line}")
elif line["type"] == "stream":
token = line["token"].replace('\u0000', '')
full_response += token
if stream:
yield token
elif line["type"] == "finalAnswer":
break
full_response = full_response.replace('<|im_end|', '').replace('\u0000', '').strip()
if not stream:
yield full_response
@classmethod
def supports_model(cls, model: str) -> bool:
"""Check if the model is supported by the provider."""
return model in cls.models or model in cls.model_aliases