mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-11-28 02:26:24 +03:00
92 lines
2.6 KiB
Python
92 lines
2.6 KiB
Python
import json
|
|
import random
|
|
import string
|
|
import time
|
|
from typing import Any
|
|
|
|
from flask import Flask, request
|
|
from flask_cors import CORS
|
|
|
|
from g4f import ChatCompletion
|
|
|
|
app = Flask(__name__)
|
|
CORS(app)
|
|
|
|
|
|
@app.route("/chat/completions", methods=["POST"])
|
|
def chat_completions():
|
|
model = request.get_json().get("model", "gpt-3.5-turbo")
|
|
stream = request.get_json().get("stream", False)
|
|
messages = request.get_json().get("messages")
|
|
|
|
response = ChatCompletion.create(model=model, stream=stream, messages=messages)
|
|
|
|
completion_id = "".join(random.choices(string.ascii_letters + string.digits, k=28))
|
|
completion_timestamp = int(time.time())
|
|
|
|
if not stream:
|
|
return {
|
|
"id": f"chatcmpl-{completion_id}",
|
|
"object": "chat.completion",
|
|
"created": completion_timestamp,
|
|
"model": model,
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"message": {
|
|
"role": "assistant",
|
|
"content": response,
|
|
},
|
|
"finish_reason": "stop",
|
|
}
|
|
],
|
|
"usage": {
|
|
"prompt_tokens": None,
|
|
"completion_tokens": None,
|
|
"total_tokens": None,
|
|
},
|
|
}
|
|
|
|
def streaming():
|
|
for chunk in response:
|
|
completion_data = {
|
|
"id": f"chatcmpl-{completion_id}",
|
|
"object": "chat.completion.chunk",
|
|
"created": completion_timestamp,
|
|
"model": model,
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"content": chunk,
|
|
},
|
|
"finish_reason": None,
|
|
}
|
|
],
|
|
}
|
|
|
|
content = json.dumps(completion_data, separators=(",", ":"))
|
|
yield f"data: {content}\n\n"
|
|
time.sleep(0.1)
|
|
|
|
end_completion_data: dict[str, Any] = {
|
|
"id": f"chatcmpl-{completion_id}",
|
|
"object": "chat.completion.chunk",
|
|
"created": completion_timestamp,
|
|
"model": model,
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {},
|
|
"finish_reason": "stop",
|
|
}
|
|
],
|
|
}
|
|
content = json.dumps(end_completion_data, separators=(",", ":"))
|
|
yield f"data: {content}\n\n"
|
|
|
|
return app.response_class(streaming(), mimetype="text/event-stream")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
app.run(host="0.0.0.0", port=1337, debug=True) |