mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-11-29 22:34:08 +03:00
273 lines
8.7 KiB
Python
273 lines
8.7 KiB
Python
from __future__ import annotations
|
|
import sys
|
|
import asyncio
|
|
from asyncio import AbstractEventLoop
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from abc import abstractmethod
|
|
from inspect import signature, Parameter
|
|
from .helper import get_cookies, format_prompt
|
|
from ..typing import CreateResult, AsyncResult, Messages, Union
|
|
from ..base_provider import BaseProvider
|
|
from ..errors import NestAsyncioError, ModelNotSupportedError
|
|
|
|
if sys.version_info < (3, 10):
|
|
NoneType = type(None)
|
|
else:
|
|
from types import NoneType
|
|
|
|
# Set Windows event loop policy for better compatibility with asyncio and curl_cffi
|
|
if sys.platform == 'win32':
|
|
if isinstance(asyncio.get_event_loop_policy(), asyncio.WindowsProactorEventLoopPolicy):
|
|
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
|
|
|
def get_running_loop() -> Union[AbstractEventLoop, None]:
|
|
try:
|
|
loop = asyncio.get_running_loop()
|
|
if not hasattr(loop.__class__, "_nest_patched"):
|
|
raise NestAsyncioError(
|
|
'Use "create_async" instead of "create" function in a running event loop. Or use "nest_asyncio" package.'
|
|
)
|
|
return loop
|
|
except RuntimeError:
|
|
pass
|
|
|
|
class AbstractProvider(BaseProvider):
|
|
"""
|
|
Abstract class for providing asynchronous functionality to derived classes.
|
|
"""
|
|
|
|
@classmethod
|
|
async def create_async(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
*,
|
|
loop: AbstractEventLoop = None,
|
|
executor: ThreadPoolExecutor = None,
|
|
**kwargs
|
|
) -> str:
|
|
"""
|
|
Asynchronously creates a result based on the given model and messages.
|
|
|
|
Args:
|
|
cls (type): The class on which this method is called.
|
|
model (str): The model to use for creation.
|
|
messages (Messages): The messages to process.
|
|
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
|
|
executor (ThreadPoolExecutor, optional): The executor for running async tasks. Defaults to None.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Returns:
|
|
str: The created result as a string.
|
|
"""
|
|
loop = loop or asyncio.get_running_loop()
|
|
|
|
def create_func() -> str:
|
|
return "".join(cls.create_completion(model, messages, False, **kwargs))
|
|
|
|
return await asyncio.wait_for(
|
|
loop.run_in_executor(executor, create_func),
|
|
timeout=kwargs.get("timeout")
|
|
)
|
|
|
|
@classmethod
|
|
@property
|
|
def params(cls) -> str:
|
|
"""
|
|
Returns the parameters supported by the provider.
|
|
|
|
Args:
|
|
cls (type): The class on which this property is called.
|
|
|
|
Returns:
|
|
str: A string listing the supported parameters.
|
|
"""
|
|
sig = signature(
|
|
cls.create_async_generator if issubclass(cls, AsyncGeneratorProvider) else
|
|
cls.create_async if issubclass(cls, AsyncProvider) else
|
|
cls.create_completion
|
|
)
|
|
|
|
def get_type_name(annotation: type) -> str:
|
|
return annotation.__name__ if hasattr(annotation, "__name__") else str(annotation)
|
|
|
|
args = ""
|
|
for name, param in sig.parameters.items():
|
|
if name in ("self", "kwargs") or (name == "stream" and not cls.supports_stream):
|
|
continue
|
|
args += f"\n {name}"
|
|
args += f": {get_type_name(param.annotation)}" if param.annotation is not Parameter.empty else ""
|
|
args += f' = "{param.default}"' if param.default == "" else f" = {param.default}" if param.default is not Parameter.empty else ""
|
|
|
|
return f"g4f.Provider.{cls.__name__} supports: ({args}\n)"
|
|
|
|
|
|
class AsyncProvider(AbstractProvider):
|
|
"""
|
|
Provides asynchronous functionality for creating completions.
|
|
"""
|
|
|
|
@classmethod
|
|
def create_completion(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
stream: bool = False,
|
|
**kwargs
|
|
) -> CreateResult:
|
|
"""
|
|
Creates a completion result synchronously.
|
|
|
|
Args:
|
|
cls (type): The class on which this method is called.
|
|
model (str): The model to use for creation.
|
|
messages (Messages): The messages to process.
|
|
stream (bool): Indicates whether to stream the results. Defaults to False.
|
|
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Returns:
|
|
CreateResult: The result of the completion creation.
|
|
"""
|
|
get_running_loop()
|
|
yield asyncio.run(cls.create_async(model, messages, **kwargs))
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
async def create_async(
|
|
model: str,
|
|
messages: Messages,
|
|
**kwargs
|
|
) -> str:
|
|
"""
|
|
Abstract method for creating asynchronous results.
|
|
|
|
Args:
|
|
model (str): The model to use for creation.
|
|
messages (Messages): The messages to process.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Raises:
|
|
NotImplementedError: If this method is not overridden in derived classes.
|
|
|
|
Returns:
|
|
str: The created result as a string.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
|
|
class AsyncGeneratorProvider(AsyncProvider):
|
|
"""
|
|
Provides asynchronous generator functionality for streaming results.
|
|
"""
|
|
supports_stream = True
|
|
|
|
@classmethod
|
|
def create_completion(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
stream: bool = True,
|
|
**kwargs
|
|
) -> CreateResult:
|
|
"""
|
|
Creates a streaming completion result synchronously.
|
|
|
|
Args:
|
|
cls (type): The class on which this method is called.
|
|
model (str): The model to use for creation.
|
|
messages (Messages): The messages to process.
|
|
stream (bool): Indicates whether to stream the results. Defaults to True.
|
|
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Returns:
|
|
CreateResult: The result of the streaming completion creation.
|
|
"""
|
|
loop = get_running_loop()
|
|
new_loop = False
|
|
if not loop:
|
|
loop = asyncio.new_event_loop()
|
|
asyncio.set_event_loop(loop)
|
|
new_loop = True
|
|
|
|
generator = cls.create_async_generator(model, messages, stream=stream, **kwargs)
|
|
gen = generator.__aiter__()
|
|
|
|
while True:
|
|
try:
|
|
yield loop.run_until_complete(gen.__anext__())
|
|
except StopAsyncIteration:
|
|
break
|
|
|
|
if new_loop:
|
|
loop.close()
|
|
asyncio.set_event_loop(None)
|
|
|
|
@classmethod
|
|
async def create_async(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
**kwargs
|
|
) -> str:
|
|
"""
|
|
Asynchronously creates a result from a generator.
|
|
|
|
Args:
|
|
cls (type): The class on which this method is called.
|
|
model (str): The model to use for creation.
|
|
messages (Messages): The messages to process.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Returns:
|
|
str: The created result as a string.
|
|
"""
|
|
return "".join([
|
|
chunk async for chunk in cls.create_async_generator(model, messages, stream=False, **kwargs)
|
|
if not isinstance(chunk, Exception)
|
|
])
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
async def create_async_generator(
|
|
model: str,
|
|
messages: Messages,
|
|
stream: bool = True,
|
|
**kwargs
|
|
) -> AsyncResult:
|
|
"""
|
|
Abstract method for creating an asynchronous generator.
|
|
|
|
Args:
|
|
model (str): The model to use for creation.
|
|
messages (Messages): The messages to process.
|
|
stream (bool): Indicates whether to stream the results. Defaults to True.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Raises:
|
|
NotImplementedError: If this method is not overridden in derived classes.
|
|
|
|
Returns:
|
|
AsyncResult: An asynchronous generator yielding results.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
class ProviderModelMixin:
|
|
default_model: str
|
|
models: list[str] = []
|
|
model_aliases: dict[str, str] = {}
|
|
|
|
@classmethod
|
|
def get_models(cls) -> list[str]:
|
|
return cls.models
|
|
|
|
@classmethod
|
|
def get_model(cls, model: str) -> str:
|
|
if not model:
|
|
return cls.default_model
|
|
elif model in cls.model_aliases:
|
|
return cls.model_aliases[model]
|
|
elif model not in cls.get_models():
|
|
raise ModelNotSupportedError(f"Model is not supported: {model} in: {cls.__name__}")
|
|
return model |