mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-12-25 12:16:17 +03:00
84 lines
3.2 KiB
Python
84 lines
3.2 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
from aiohttp import ClientSession, BaseConnector
|
|
|
|
from ..typing import AsyncResult, Messages
|
|
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
|
|
from .helper import get_connector
|
|
from ..errors import RateLimitError, ModelNotFoundError
|
|
from ..requests.raise_for_status import raise_for_status
|
|
|
|
class HuggingFace(AsyncGeneratorProvider, ProviderModelMixin):
|
|
url = "https://huggingface.co/chat"
|
|
working = True
|
|
needs_auth = True
|
|
supports_message_history = True
|
|
models = [
|
|
'CohereForAI/c4ai-command-r-plus',
|
|
'meta-llama/Meta-Llama-3-70B-Instruct',
|
|
'mistralai/Mixtral-8x7B-Instruct-v0.1',
|
|
'NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO',
|
|
'01-ai/Yi-1.5-34B-Chat',
|
|
'mistralai/Mistral-7B-Instruct-v0.2',
|
|
'microsoft/Phi-3-mini-4k-instruct',
|
|
]
|
|
default_model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
|
|
|
@classmethod
|
|
async def create_async_generator(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
stream: bool = True,
|
|
proxy: str = None,
|
|
connector: BaseConnector = None,
|
|
api_base: str = "https://api-inference.huggingface.co",
|
|
api_key: str = None,
|
|
max_new_tokens: int = 1024,
|
|
temperature: float = 0.7,
|
|
**kwargs
|
|
) -> AsyncResult:
|
|
model = cls.get_model(model) if not model else model
|
|
headers = {}
|
|
if api_key is not None:
|
|
headers["Authorization"] = f"Bearer {api_key}"
|
|
params = {
|
|
"return_full_text": False,
|
|
"max_new_tokens": max_new_tokens,
|
|
"temperature": temperature,
|
|
**kwargs
|
|
}
|
|
payload = {"inputs": format_prompt(messages), "parameters": params, "stream": stream}
|
|
async with ClientSession(
|
|
headers=headers,
|
|
connector=get_connector(connector, proxy)
|
|
) as session:
|
|
async with session.post(f"{api_base.rstrip('/')}/models/{model}", json=payload) as response:
|
|
if response.status == 404:
|
|
raise ModelNotFoundError(f"Model is not supported: {model}")
|
|
await raise_for_status(response)
|
|
if stream:
|
|
first = True
|
|
async for line in response.content:
|
|
if line.startswith(b"data:"):
|
|
data = json.loads(line[5:])
|
|
if not data["token"]["special"]:
|
|
chunk = data["token"]["text"]
|
|
if first:
|
|
first = False
|
|
chunk = chunk.lstrip()
|
|
yield chunk
|
|
else:
|
|
yield (await response.json())[0]["generated_text"].strip()
|
|
|
|
def format_prompt(messages: Messages) -> str:
|
|
system_messages = [message["content"] for message in messages if message["role"] == "system"]
|
|
question = " ".join([messages[-1]["content"], *system_messages])
|
|
history = "".join([
|
|
f"<s>[INST]{messages[idx-1]['content']} [/INST] {message['content']}</s>"
|
|
for idx, message in enumerate(messages)
|
|
if message["role"] == "assistant"
|
|
])
|
|
return f"{history}<s>[INST] {question} [/INST]"
|