gpt4free/g4f/Provider/needs_auth/OpenaiChat.py

648 lines
29 KiB
Python

from __future__ import annotations
import os
import re
import asyncio
import uuid
import json
import base64
import time
import requests
import random
from typing import AsyncIterator
from copy import copy
try:
import nodriver
from nodriver.cdp.network import get_response_body
has_nodriver = True
except ImportError:
has_nodriver = False
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ...typing import AsyncResult, Messages, Cookies, ImagesType, AsyncIterator
from ...requests.raise_for_status import raise_for_status
from ...requests import StreamSession
from ...requests import get_nodriver
from ...image import ImageResponse, ImageRequest, to_image, to_bytes, is_accepted_format
from ...errors import MissingAuthError, NoValidHarFileError
from ...providers.response import BaseConversation, FinishReason, SynthesizeData
from ..helper import format_cookies
from ..openai.har_file import get_request_config
from ..openai.har_file import RequestConfig, arkReq, arkose_url, start_url, conversation_url, backend_url, backend_anon_url
from ..openai.proofofwork import generate_proof_token
from ..openai.new import get_requirements_token, get_config
from ... import debug
DEFAULT_HEADERS = {
"accept": "*/*",
"accept-encoding": "gzip, deflate, br, zstd",
'accept-language': 'en-US,en;q=0.8',
"referer": "https://chatgpt.com/",
"sec-ch-ua": "\"Google Chrome\";v=\"131\", \"Chromium\";v=\"131\", \"Not_A Brand\";v=\"24\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"sec-gpc": "1",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36"
}
INIT_HEADERS = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.8',
'cache-control': 'no-cache',
'pragma': 'no-cache',
'priority': 'u=0, i',
"sec-ch-ua": "\"Google Chrome\";v=\"131\", \"Chromium\";v=\"131\", \"Not_A Brand\";v=\"24\"",
'sec-ch-ua-arch': '"arm"',
'sec-ch-ua-bitness': '"64"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-model': '""',
"sec-ch-ua-platform": "\"Windows\"",
'sec-ch-ua-platform-version': '"14.4.0"',
'sec-fetch-dest': 'document',
'sec-fetch-mode': 'navigate',
'sec-fetch-site': 'none',
'sec-fetch-user': '?1',
'upgrade-insecure-requests': '1',
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36"
}
UPLOAD_HEADERS = {
"accept": "application/json, text/plain, */*",
'accept-language': 'en-US,en;q=0.8',
"referer": "https://chatgpt.com/",
"priority": "u=1, i",
"sec-ch-ua": "\"Google Chrome\";v=\"131\", \"Chromium\";v=\"131\", \"Not_A Brand\";v=\"24\"",
"sec-ch-ua-mobile": "?0",
'sec-ch-ua-platform': '"macOS"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "cross-site",
"x-ms-blob-type": "BlockBlob",
"x-ms-version": "2020-04-08",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36"
}
class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
"""A class for creating and managing conversations with OpenAI chat service"""
label = "OpenAI ChatGPT"
url = "https://chatgpt.com"
working = True
supports_gpt_4 = True
supports_message_history = True
supports_system_message = True
default_model = "auto"
fallback_models = [default_model, "gpt-4", "gpt-4o", "gpt-4o-mini", "gpt-4o-canmore", "o1", "o1-preview", "o1-mini"]
vision_models = fallback_models
synthesize_content_type = "audio/mpeg"
_api_key: str = None
_headers: dict = None
_cookies: Cookies = None
_expires: int = None
@classmethod
def get_models(cls):
if not cls.models:
try:
response = requests.get(f"{cls.url}/backend-anon/models")
response.raise_for_status()
data = response.json()
cls.models = [model.get("slug") for model in data.get("models")]
except Exception:
cls.models = cls.fallback_models
return cls.models
@classmethod
async def upload_images(
cls,
session: StreamSession,
headers: dict,
images: ImagesType,
) -> ImageRequest:
"""
Upload an image to the service and get the download URL
Args:
session: The StreamSession object to use for requests
headers: The headers to include in the requests
images: The images to upload, either a PIL Image object or a bytes object
Returns:
An ImageRequest object that contains the download URL, file name, and other data
"""
async def upload_image(image, image_name):
# Convert the image to a PIL Image object and get the extension
data_bytes = to_bytes(image)
image = to_image(data_bytes)
extension = image.format.lower()
data = {
"file_name": "" if image_name is None else image_name,
"file_size": len(data_bytes),
"use_case": "multimodal"
}
# Post the image data to the service and get the image data
async with session.post(f"{cls.url}/backend-api/files", json=data, headers=headers) as response:
cls._update_request_args(session)
await raise_for_status(response, "Create file failed")
image_data = {
**data,
**await response.json(),
"mime_type": is_accepted_format(data_bytes),
"extension": extension,
"height": image.height,
"width": image.width
}
# Put the image bytes to the upload URL and check the status
await asyncio.sleep(1)
async with session.put(
image_data["upload_url"],
data=data_bytes,
headers={
**UPLOAD_HEADERS,
"Content-Type": image_data["mime_type"],
"x-ms-blob-type": "BlockBlob",
"x-ms-version": "2020-04-08",
"Origin": "https://chatgpt.com",
}
) as response:
await raise_for_status(response)
# Post the file ID to the service and get the download URL
async with session.post(
f"{cls.url}/backend-api/files/{image_data['file_id']}/uploaded",
json={},
headers=headers
) as response:
cls._update_request_args(session)
await raise_for_status(response, "Get download url failed")
image_data["download_url"] = (await response.json())["download_url"]
return ImageRequest(image_data)
if not images:
return
return [await upload_image(image, image_name) for image, image_name in images]
@classmethod
def create_messages(cls, messages: Messages, image_requests: ImageRequest = None, system_hints: list = None):
"""
Create a list of messages for the user input
Args:
prompt: The user input as a string
image_response: The image response object, if any
Returns:
A list of messages with the user input and the image, if any
"""
# Create a message object with the user role and the content
messages = [{
"author": {"role": message["role"]},
"content": {"content_type": "text", "parts": [message["content"]]},
"id": str(uuid.uuid4()),
"create_time": int(time.time()),
"metadata": {"serialization_metadata": {"custom_symbol_offsets": []}, "system_hints": system_hints},
} for message in messages]
# Check if there is an image response
if image_requests:
# Change content in last user message
messages[-1]["content"] = {
"content_type": "multimodal_text",
"parts": [*[{
"asset_pointer": f"file-service://{image_request.get('file_id')}",
"height": image_request.get("height"),
"size_bytes": image_request.get("file_size"),
"width": image_request.get("width"),
}
for image_request in image_requests],
messages[-1]["content"]["parts"][0]]
}
# Add the metadata object with the attachments
messages[-1]["metadata"] = {
"attachments": [{
"height": image_request.get("height"),
"id": image_request.get("file_id"),
"mimeType": image_request.get("mime_type"),
"name": image_request.get("file_name"),
"size": image_request.get("file_size"),
"width": image_request.get("width"),
}
for image_request in image_requests]
}
return messages
@classmethod
async def get_generated_image(cls, session: StreamSession, headers: dict, element: dict, prompt: str = None) -> ImageResponse:
"""
Retrieves the image response based on the message content.
This method processes the message content to extract image information and retrieves the
corresponding image from the backend API. It then returns an ImageResponse object containing
the image URL and the prompt used to generate the image.
Args:
session (StreamSession): The StreamSession object used for making HTTP requests.
headers (dict): HTTP headers to be used for the request.
line (dict): A dictionary representing the line of response that contains image information.
Returns:
ImageResponse: An object containing the image URL and the prompt, or None if no image is found.
Raises:
RuntimeError: If there'san error in downloading the image, including issues with the HTTP request or response.
"""
try:
prompt = element["metadata"]["dalle"]["prompt"]
file_id = element["asset_pointer"].split("file-service://", 1)[1]
except TypeError:
return
except Exception as e:
raise RuntimeError(f"No Image: {e.__class__.__name__}: {e}")
try:
async with session.get(f"{cls.url}/backend-api/files/{file_id}/download", headers=headers) as response:
cls._update_request_args(session)
await raise_for_status(response)
download_url = (await response.json())["download_url"]
return ImageResponse(download_url, prompt)
except Exception as e:
raise RuntimeError(f"Error in downloading image: {e}")
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
timeout: int = 180,
cookies: Cookies = None,
auto_continue: bool = False,
history_disabled: bool = False,
action: str = "next",
conversation_id: str = None,
conversation: Conversation = None,
parent_id: str = None,
images: ImagesType = None,
return_conversation: bool = False,
max_retries: int = 3,
web_search: bool = False,
**kwargs
) -> AsyncResult:
"""
Create an asynchronous generator for the conversation.
Args:
model (str): The model name.
messages (Messages): The list of previous messages.
proxy (str): Proxy to use for requests.
timeout (int): Timeout for requests.
api_key (str): Access token for authentication.
cookies (dict): Cookies to use for authentication.
auto_continue (bool): Flag to automatically continue the conversation.
history_disabled (bool): Flag to disable history and training.
action (str): Type of action ('next', 'continue', 'variant').
conversation_id (str): ID of the conversation.
parent_id (str): ID of the parent message.
images (ImagesType): Images to include in the conversation.
return_conversation (bool): Flag to include response fields in the output.
**kwargs: Additional keyword arguments.
Yields:
AsyncResult: Asynchronous results from the generator.
Raises:
RuntimeError: If an error occurs during processing.
"""
if cls.needs_auth:
async for message in cls.login(proxy):
yield message
async with StreamSession(
proxy=proxy,
impersonate="chrome",
timeout=timeout
) as session:
image_requests = None
if not cls.needs_auth:
if cls._headers is None:
cls._create_request_args(cookies)
async with session.get(cls.url, headers=INIT_HEADERS) as response:
cls._update_request_args(session)
await raise_for_status(response)
else:
async with session.get(cls.url, headers=cls._headers) as response:
cls._update_request_args(session)
await raise_for_status(response)
try:
image_requests = await cls.upload_images(session, cls._headers, images) if images else None
except Exception as e:
debug.log("OpenaiChat: Upload image failed")
debug.log(f"{e.__class__.__name__}: {e}")
model = cls.get_model(model)
if conversation is None:
conversation = Conversation(conversation_id, str(uuid.uuid4()) if parent_id is None else parent_id)
else:
conversation = copy(conversation)
if cls._api_key is None:
auto_continue = False
conversation.finish_reason = None
while conversation.finish_reason is None:
async with session.post(
f"{cls.url}/backend-anon/sentinel/chat-requirements"
if cls._api_key is None else
f"{cls.url}/backend-api/sentinel/chat-requirements",
json={"p": get_requirements_token(RequestConfig.proof_token) if RequestConfig.proof_token else None},
headers=cls._headers
) as response:
if response.status == 401:
cls._headers = cls._api_key = None
else:
cls._update_request_args(session)
await raise_for_status(response)
chat_requirements = await response.json()
need_turnstile = chat_requirements.get("turnstile", {}).get("required", False)
need_arkose = chat_requirements.get("arkose", {}).get("required", False)
chat_token = chat_requirements.get("token")
if need_arkose and RequestConfig.arkose_token is None:
await get_request_config(proxy)
cls._create_request_args(RequestConfig,cookies, RequestConfig.headers)
cls._set_api_key(RequestConfig.access_token)
if RequestConfig.arkose_token is None:
raise MissingAuthError("No arkose token found in .har file")
if "proofofwork" in chat_requirements:
if RequestConfig.proof_token is None:
RequestConfig.proof_token = get_config(cls._headers.get("user-agent"))
proofofwork = generate_proof_token(
**chat_requirements["proofofwork"],
user_agent=cls._headers.get("user-agent"),
proof_token=RequestConfig.proof_token
)
[debug.log(text) for text in (
f"Arkose: {'False' if not need_arkose else RequestConfig.arkose_token[:12]+'...'}",
f"Proofofwork: {'False' if proofofwork is None else proofofwork[:12]+'...'}",
f"AccessToken: {'False' if cls._api_key is None else cls._api_key[:12]+'...'}",
)]
data = {
"action": action,
"messages": None,
"parent_message_id": conversation.message_id,
"model": model,
"timezone_offset_min":-60,
"timezone":"Europe/Berlin",
"history_and_training_disabled": history_disabled and not auto_continue and not return_conversation or not cls.needs_auth,
"conversation_mode":{"kind":"primary_assistant","plugin_ids":None},
"force_paragen":False,
"force_paragen_model_slug":"",
"force_rate_limit":False,
"reset_rate_limits":False,
"websocket_request_id": str(uuid.uuid4()),
"system_hints": ["search"] if web_search else None,
"supported_encodings":["v1"],
"conversation_origin":None,
"client_contextual_info":{"is_dark_mode":False,"time_since_loaded":random.randint(20, 500),"page_height":578,"page_width":1850,"pixel_ratio":1,"screen_height":1080,"screen_width":1920},
"paragen_stream_type_override":None,
"paragen_cot_summary_display_override":"allow",
"supports_buffering":True
}
if conversation.conversation_id is not None:
data["conversation_id"] = conversation.conversation_id
debug.log(f"OpenaiChat: Use conversation: {conversation.conversation_id}")
if action != "continue":
messages = messages if conversation_id is None else [messages[-1]]
data["messages"] = cls.create_messages(messages, image_requests, ["search"] if web_search else None)
headers = {
**cls._headers,
"accept": "text/event-stream",
"content-type": "application/json",
"openai-sentinel-chat-requirements-token": chat_token,
}
if RequestConfig.arkose_token:
headers["openai-sentinel-arkose-token"] = RequestConfig.arkose_token
if proofofwork is not None:
headers["openai-sentinel-proof-token"] = proofofwork
if need_turnstile and RequestConfig.turnstile_token is not None:
headers['openai-sentinel-turnstile-token'] = RequestConfig.turnstile_token
async with session.post(
f"{cls.url}/backend-anon/conversation"
if cls._api_key is None else
f"{cls.url}/backend-api/conversation",
json=data,
headers=headers
) as response:
cls._update_request_args(session)
if response.status == 403 and max_retries > 0:
max_retries -= 1
debug.log(f"Retry: Error {response.status}: {await response.text()}")
await asyncio.sleep(5)
continue
await raise_for_status(response)
if return_conversation:
yield conversation
async for line in response.iter_lines():
async for chunk in cls.iter_messages_line(session, line, conversation):
yield chunk
if not history_disabled and cls._api_key is not None:
yield SynthesizeData(cls.__name__, {
"conversation_id": conversation.conversation_id,
"message_id": conversation.message_id,
"voice": "maple",
})
if auto_continue and conversation.finish_reason == "max_tokens":
conversation.finish_reason = None
action = "continue"
await asyncio.sleep(5)
else:
break
yield FinishReason(conversation.finish_reason)
@classmethod
async def iter_messages_line(cls, session: StreamSession, line: bytes, fields: Conversation) -> AsyncIterator:
if not line.startswith(b"data: "):
return
elif line.startswith(b"data: [DONE]"):
if fields.finish_reason is None:
fields.finish_reason = "error"
return
try:
line = json.loads(line[6:])
except:
return
if isinstance(line, dict) and "v" in line:
v = line.get("v")
if isinstance(v, str) and fields.is_recipient:
if "p" not in line or line.get("p") == "/message/content/parts/0":
yield v
elif isinstance(v, list) and fields.is_recipient:
for m in v:
if m.get("p") == "/message/content/parts/0":
yield m.get("v")
elif m.get("p") == "/message/metadata":
fields.finish_reason = m.get("v", {}).get("finish_details", {}).get("type")
break
elif isinstance(v, dict):
if fields.conversation_id is None:
fields.conversation_id = v.get("conversation_id")
debug.log(f"OpenaiChat: New conversation: {fields.conversation_id}")
m = v.get("message", {})
fields.is_recipient = m.get("recipient", "all") == "all"
if fields.is_recipient:
c = m.get("content", {})
if c.get("content_type") == "multimodal_text":
generated_images = []
for element in c.get("parts"):
if isinstance(element, dict) and element.get("content_type") == "image_asset_pointer":
image = cls.get_generated_image(session, cls._headers, element)
generated_images.append(image)
for image_response in await asyncio.gather(*generated_images):
if image_response is not None:
yield image_response
if m.get("author", {}).get("role") == "assistant":
fields.message_id = v.get("message", {}).get("id")
return
if "error" in line and line.get("error"):
raise RuntimeError(line.get("error"))
@classmethod
async def synthesize(cls, params: dict) -> AsyncIterator[bytes]:
async for _ in cls.login():
pass
async with StreamSession(
impersonate="chrome",
timeout=0
) as session:
async with session.get(
f"{cls.url}/backend-api/synthesize",
params=params,
headers=cls._headers
) as response:
await raise_for_status(response)
async for chunk in response.iter_content():
yield chunk
@classmethod
async def login(cls, proxy: str = None) -> AsyncIterator[str]:
if cls._expires is not None and cls._expires < time.time():
cls._headers = cls._api_key = None
try:
await get_request_config(proxy)
cls._create_request_args(RequestConfig.cookies, RequestConfig.headers)
if RequestConfig.access_token is not None:
cls._set_api_key(RequestConfig.access_token)
except NoValidHarFileError:
if has_nodriver:
if cls._api_key is None:
login_url = os.environ.get("G4F_LOGIN_URL")
if login_url:
yield f"[Login to {cls.label}]({login_url})\n\n"
await cls.nodriver_auth(proxy)
else:
raise
@classmethod
async def nodriver_auth(cls, proxy: str = None):
browser = await get_nodriver(proxy=proxy)
page = browser.main_tab
def on_request(event: nodriver.cdp.network.RequestWillBeSent):
if event.request.url == start_url or event.request.url.startswith(conversation_url):
RequestConfig.headers = event.request.headers
elif event.request.url in (backend_url, backend_anon_url):
if "OpenAI-Sentinel-Proof-Token" in event.request.headers:
RequestConfig.proof_token = json.loads(base64.b64decode(
event.request.headers["OpenAI-Sentinel-Proof-Token"].split("gAAAAAB", 1)[-1].encode()
).decode())
if "OpenAI-Sentinel-Turnstile-Token" in event.request.headers:
RequestConfig.turnstile_token = event.request.headers["OpenAI-Sentinel-Turnstile-Token"]
if "Authorization" in event.request.headers:
cls._api_key = event.request.headers["Authorization"].split()[-1]
elif event.request.url == arkose_url:
RequestConfig.arkose_request = arkReq(
arkURL=event.request.url,
arkBx=None,
arkHeader=event.request.headers,
arkBody=event.request.post_data,
userAgent=event.request.headers.get("user-agent")
)
await page.send(nodriver.cdp.network.enable())
page.add_handler(nodriver.cdp.network.RequestWillBeSent, on_request)
page = await browser.get(cls.url)
user_agent = await page.evaluate("window.navigator.userAgent")
await page.select("#prompt-textarea", 240)
while True:
if cls._api_key is not None:
break
body = await page.evaluate("JSON.stringify(window.__remixContext)")
if body:
match = re.search(r'"accessToken":"(.*?)"', body)
if match:
cls._api_key = match.group(1)
break
await asyncio.sleep(1)
while True:
if RequestConfig.proof_token:
break
await asyncio.sleep(1)
RequestConfig.data_build = await page.evaluate("document.documentElement.getAttribute('data-build')")
for c in await page.send(get_cookies([cls.url])):
RequestConfig.cookies[c["name"]] = c["value"]
await page.close()
cls._create_request_args(RequestConfig.cookies, RequestConfig.headers, user_agent=user_agent)
cls._set_api_key(cls._api_key)
@staticmethod
def get_default_headers() -> dict:
return {
**DEFAULT_HEADERS,
"content-type": "application/json",
}
@classmethod
def _create_request_args(cls, cookies: Cookies = None, headers: dict = None, user_agent: str = None):
cls._headers = cls.get_default_headers() if headers is None else headers
if user_agent is not None:
cls._headers["user-agent"] = user_agent
cls._cookies = {} if cookies is None else cookies
cls._update_cookie_header()
@classmethod
def _update_request_args(cls, session: StreamSession):
for c in session.cookie_jar if hasattr(session, "cookie_jar") else session.cookies.jar:
cls._cookies[c.key if hasattr(c, "key") else c.name] = c.value
cls._update_cookie_header()
@classmethod
def _set_api_key(cls, api_key: str):
cls._api_key = api_key
cls._expires = int(time.time()) + 60 * 60 * 4
if api_key:
cls._headers["authorization"] = f"Bearer {api_key}"
@classmethod
def _update_cookie_header(cls):
if cls._cookies:
cls._headers["cookie"] = format_cookies(cls._cookies)
class Conversation(BaseConversation):
"""
Class to encapsulate response fields.
"""
def __init__(self, conversation_id: str = None, message_id: str = None, finish_reason: str = None):
self.conversation_id = conversation_id
self.message_id = message_id
self.finish_reason = finish_reason
self.is_recipient = False
def get_cookies(
urls: list[str] = None
):
params = dict()
if urls is not None:
params['urls'] = [i for i in urls]
cmd_dict = {
'method': 'Network.getCookies',
'params': params,
}
json = yield cmd_dict
return json['cookies']