mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-12-25 04:01:52 +03:00
bb9132bcb4
* refactor(g4f/Provider/Airforce.py): improve model handling and filtering - Add hidden_models set to exclude specific models - Add evil alias for uncensored model handling - Extend filtering for model-specific response tokens - Add response buffering for streamed content - Update model fetching with error handling * refactor(g4f/Provider/Blackbox.py): improve caching and model handling - Add caching system for validated values with file-based storage - Rename 'flux' model to 'ImageGeneration' and update references - Add temperature, top_p and max_tokens parameters to generator - Simplify HTTP headers and remove redundant options - Add model alias mapping for ImageGeneration - Add file system utilities for cache management * feat(g4f/Provider/RobocodersAPI.py): add caching and error handling - Add file-based caching system for access tokens and sessions - Add robust error handling with specific error messages - Add automatic dialog continuation on resource limits - Add HTML parsing with BeautifulSoup for token extraction - Add debug logging for error tracking - Add timeout configuration for API requests * refactor(g4f/Provider/DarkAI.py): update DarkAI default model and aliases - Change default model from llama-3-405b to llama-3-70b - Remove llama-3-405b from supported models list - Remove llama-3.1-405b from model aliases * feat(g4f/Provider/Blackbox2.py): add image generation support - Add image model 'flux' with dedicated API endpoint - Refactor generator to support both text and image outputs - Extract headers into reusable static method - Add type hints for AsyncGenerator return type - Split generation logic into _generate_text and _generate_image methods - Add ImageResponse handling for image generation results BREAKING CHANGE: create_async_generator now returns AsyncGenerator instead of AsyncResult * refactor(g4f/Provider/ChatGptEs.py): update ChatGptEs model configuration - Update models list to include gpt-3.5-turbo - Remove chatgpt-4o-latest from supported models - Remove model_aliases mapping for gpt-4o * feat(g4f/Provider/DeepInfraChat.py): add Accept-Language header support - Add Accept-Language header for internationalization - Maintain existing header configuration - Improve request compatibility with language preferences * refactor(g4f/Provider/needs_auth/Gemini.py): add ProviderModelMixin inheritance - Add ProviderModelMixin to class inheritance - Import ProviderModelMixin from base_provider - Move BaseConversation import to base_provider imports * refactor(g4f/Provider/Liaobots.py): update model details and aliases - Add version suffix to o1 model IDs - Update model aliases for o1-preview and o1-mini - Standardize version format across model definitions * refactor(g4f/Provider/PollinationsAI.py): enhance model support and generation - Split generation logic into dedicated image/text methods - Add additional text models including sur and claude - Add width/height parameters for image generation - Add model existence validation - Add hasattr checks for model lists initialization * chore(gitignore): add provider cache directory - Add g4f/Provider/.cache to gitignore patterns * refactor(g4f/Provider/ReplicateHome.py): update model configuration - Update default model to gemma-2b-it - Add default_image_model configuration - Remove llava-13b from supported models - Simplify request headers * feat(g4f/models.py): expand provider and model support - Add new providers DarkAI and PollinationsAI - Add new models for Mistral, Flux and image generation - Update provider lists for existing models - Add P1 and Evil models with experimental providers BREAKING CHANGE: Remove llava-13b model support * refactor(Airforce): Update type hint for split_message return - Change return type of from to for consistency with import. - Maintain overall functionality and structure of the class. - Ensure compatibility with type hinting standards in Python. * refactor(g4f/Provider/Airforce.py): Update type hint for split_message return - Change return type of 'split_message' from 'list[str]' to 'List[str]' for consistency with import. - Maintain overall functionality and structure of the 'Airforce' class. - Ensure compatibility with type hinting standards in Python. * feat(g4f/Provider/RobocodersAPI.py): Add support for optional BeautifulSoup dependency - Introduce a check for the BeautifulSoup library and handle its absence gracefully. - Raise a if BeautifulSoup is not installed, prompting the user to install it. - Remove direct import of BeautifulSoup to avoid import errors when the library is missing. * fix: Updating provider documentation and small fixes in providers * Disabled the provider (RobocodersAPI) * Fix: Conflicting file g4f/models.py * Update g4f/models.py g4f/Provider/Airforce.py * Update docs/providers-and-models.md g4f/models.py g4f/Provider/Airforce.py g4f/Provider/PollinationsAI.py * Update docs/providers-and-models.md * Update .gitignore * Update g4f/models.py * Update g4f/Provider/PollinationsAI.py --------- Co-authored-by: kqlio67 <>
108 lines
4.5 KiB
Python
108 lines
4.5 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
import base64
|
|
import random
|
|
|
|
from ...typing import AsyncResult, Messages
|
|
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
|
|
from ...errors import ModelNotFoundError
|
|
from ...requests import StreamSession, raise_for_status
|
|
from ...image import ImageResponse
|
|
|
|
from .HuggingChat import HuggingChat
|
|
|
|
class HuggingFace(AsyncGeneratorProvider, ProviderModelMixin):
|
|
url = "https://huggingface.co/chat"
|
|
working = True
|
|
supports_message_history = True
|
|
default_model = HuggingChat.default_model
|
|
default_image_model = HuggingChat.default_image_model
|
|
models = [*HuggingChat.models, default_image_model]
|
|
image_models = [default_image_model]
|
|
model_aliases = HuggingChat.model_aliases
|
|
|
|
@classmethod
|
|
async def create_async_generator(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
stream: bool = True,
|
|
proxy: str = None,
|
|
api_base: str = "https://api-inference.huggingface.co",
|
|
api_key: str = None,
|
|
max_new_tokens: int = 1024,
|
|
temperature: float = 0.7,
|
|
prompt: str = None,
|
|
**kwargs
|
|
) -> AsyncResult:
|
|
model = cls.get_model(model)
|
|
headers = {
|
|
'accept': '*/*',
|
|
'accept-language': 'en',
|
|
'cache-control': 'no-cache',
|
|
'origin': 'https://huggingface.co',
|
|
'pragma': 'no-cache',
|
|
'priority': 'u=1, i',
|
|
'referer': 'https://huggingface.co/chat/',
|
|
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
|
|
'sec-ch-ua-mobile': '?0',
|
|
'sec-ch-ua-platform': '"macOS"',
|
|
'sec-fetch-dest': 'empty',
|
|
'sec-fetch-mode': 'cors',
|
|
'sec-fetch-site': 'same-origin',
|
|
'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
|
|
}
|
|
if api_key is not None:
|
|
headers["Authorization"] = f"Bearer {api_key}"
|
|
if model in cls.image_models:
|
|
stream = False
|
|
prompt = messages[-1]["content"] if prompt is None else prompt
|
|
payload = {"inputs": prompt, "parameters": {"seed": random.randint(0, 2**32)}}
|
|
else:
|
|
params = {
|
|
"return_full_text": False,
|
|
"max_new_tokens": max_new_tokens,
|
|
"temperature": temperature,
|
|
**kwargs
|
|
}
|
|
payload = {"inputs": format_prompt(messages), "parameters": params, "stream": stream}
|
|
async with StreamSession(
|
|
headers=headers,
|
|
proxy=proxy,
|
|
timeout=600
|
|
) as session:
|
|
async with session.post(f"{api_base.rstrip('/')}/models/{model}", json=payload) as response:
|
|
if response.status == 404:
|
|
raise ModelNotFoundError(f"Model is not supported: {model}")
|
|
await raise_for_status(response)
|
|
if stream:
|
|
first = True
|
|
async for line in response.iter_lines():
|
|
if line.startswith(b"data:"):
|
|
data = json.loads(line[5:])
|
|
if not data["token"]["special"]:
|
|
chunk = data["token"]["text"]
|
|
if first:
|
|
first = False
|
|
chunk = chunk.lstrip()
|
|
if chunk:
|
|
yield chunk
|
|
else:
|
|
if response.headers["content-type"].startswith("image/"):
|
|
base64_data = base64.b64encode(b"".join([chunk async for chunk in response.iter_content()]))
|
|
url = f"data:{response.headers['content-type']};base64,{base64_data.decode()}"
|
|
yield ImageResponse(url, prompt)
|
|
else:
|
|
yield (await response.json())[0]["generated_text"].strip()
|
|
|
|
def format_prompt(messages: Messages) -> str:
|
|
system_messages = [message["content"] for message in messages if message["role"] == "system"]
|
|
question = " ".join([messages[-1]["content"], *system_messages])
|
|
history = "".join([
|
|
f"<s>[INST]{messages[idx-1]['content']} [/INST] {message['content']}</s>"
|
|
for idx, message in enumerate(messages)
|
|
if message["role"] == "assistant"
|
|
])
|
|
return f"{history}<s>[INST] {question} [/INST]"
|