gpt4free/g4f/Provider/not_working/RobocodersAPI.py
kqlio67 bb9132bcb4
Updating provider documentation and small fixes in providers (#2469)
* refactor(g4f/Provider/Airforce.py): improve model handling and filtering

- Add hidden_models set to exclude specific models
- Add evil alias for uncensored model handling
- Extend filtering for model-specific response tokens
- Add response buffering for streamed content
- Update model fetching with error handling

* refactor(g4f/Provider/Blackbox.py): improve caching and model handling

- Add caching system for validated values with file-based storage
- Rename 'flux' model to 'ImageGeneration' and update references
- Add temperature, top_p and max_tokens parameters to generator
- Simplify HTTP headers and remove redundant options
- Add model alias mapping for ImageGeneration
- Add file system utilities for cache management

* feat(g4f/Provider/RobocodersAPI.py): add caching and error handling

- Add file-based caching system for access tokens and sessions
- Add robust error handling with specific error messages
- Add automatic dialog continuation on resource limits
- Add HTML parsing with BeautifulSoup for token extraction
- Add debug logging for error tracking
- Add timeout configuration for API requests

* refactor(g4f/Provider/DarkAI.py): update DarkAI default model and aliases

- Change default model from llama-3-405b to llama-3-70b
- Remove llama-3-405b from supported models list
- Remove llama-3.1-405b from model aliases

* feat(g4f/Provider/Blackbox2.py): add image generation support

- Add image model 'flux' with dedicated API endpoint
- Refactor generator to support both text and image outputs
- Extract headers into reusable static method
- Add type hints for AsyncGenerator return type
- Split generation logic into _generate_text and _generate_image methods
- Add ImageResponse handling for image generation results

BREAKING CHANGE: create_async_generator now returns AsyncGenerator instead of AsyncResult

* refactor(g4f/Provider/ChatGptEs.py): update ChatGptEs model configuration

- Update models list to include gpt-3.5-turbo
- Remove chatgpt-4o-latest from supported models
- Remove model_aliases mapping for gpt-4o

* feat(g4f/Provider/DeepInfraChat.py): add Accept-Language header support

- Add Accept-Language header for internationalization
- Maintain existing header configuration
- Improve request compatibility with language preferences

* refactor(g4f/Provider/needs_auth/Gemini.py): add ProviderModelMixin inheritance

- Add ProviderModelMixin to class inheritance
- Import ProviderModelMixin from base_provider
- Move BaseConversation import to base_provider imports

* refactor(g4f/Provider/Liaobots.py): update model details and aliases

- Add version suffix to o1 model IDs
- Update model aliases for o1-preview and o1-mini
- Standardize version format across model definitions

* refactor(g4f/Provider/PollinationsAI.py): enhance model support and generation

- Split generation logic into dedicated image/text methods
- Add additional text models including sur and claude
- Add width/height parameters for image generation
- Add model existence validation
- Add hasattr checks for model lists initialization

* chore(gitignore): add provider cache directory

- Add g4f/Provider/.cache to gitignore patterns

* refactor(g4f/Provider/ReplicateHome.py): update model configuration

- Update default model to gemma-2b-it
- Add default_image_model configuration
- Remove llava-13b from supported models
- Simplify request headers

* feat(g4f/models.py): expand provider and model support

- Add new providers DarkAI and PollinationsAI
- Add new models for Mistral, Flux and image generation
- Update provider lists for existing models
- Add P1 and Evil models with experimental providers

BREAKING CHANGE: Remove llava-13b model support

* refactor(Airforce): Update type hint for split_message return

- Change return type of  from  to  for consistency with import.
- Maintain overall functionality and structure of the  class.
- Ensure compatibility with type hinting standards in Python.

* refactor(g4f/Provider/Airforce.py): Update type hint for split_message return

- Change return type of 'split_message' from 'list[str]' to 'List[str]' for consistency with import.
- Maintain overall functionality and structure of the 'Airforce' class.
- Ensure compatibility with type hinting standards in Python.

* feat(g4f/Provider/RobocodersAPI.py): Add support for optional BeautifulSoup dependency

- Introduce a check for the BeautifulSoup library and handle its absence gracefully.
- Raise a  if BeautifulSoup is not installed, prompting the user to install it.
- Remove direct import of BeautifulSoup to avoid import errors when the library is missing.

* fix: Updating provider documentation and small fixes in providers

* Disabled the provider (RobocodersAPI)

* Fix: Conflicting file g4f/models.py

* Update g4f/models.py g4f/Provider/Airforce.py

* Update docs/providers-and-models.md g4f/models.py g4f/Provider/Airforce.py g4f/Provider/PollinationsAI.py

* Update docs/providers-and-models.md

* Update .gitignore

* Update g4f/models.py

* Update g4f/Provider/PollinationsAI.py

---------

Co-authored-by: kqlio67 <>
2024-12-09 16:52:25 +01:00

239 lines
10 KiB
Python
Executable File

from __future__ import annotations
import json
import aiohttp
from pathlib import Path
try:
from bs4 import BeautifulSoup
HAS_BEAUTIFULSOUP = True
except ImportError:
HAS_BEAUTIFULSOUP = False
BeautifulSoup = None
from aiohttp import ClientTimeout
from ...errors import MissingRequirementsError
from ...typing import AsyncResult, Messages
from ...cookies import get_cookies_dir
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..helper import format_prompt
from ... import debug
class RobocodersAPI(AsyncGeneratorProvider, ProviderModelMixin):
label = "API Robocoders AI"
url = "https://api.robocoders.ai/docs"
api_endpoint = "https://api.robocoders.ai/chat"
working = False
supports_message_history = True
default_model = 'GeneralCodingAgent'
agent = [default_model, "RepoAgent", "FrontEndAgent"]
models = [*agent]
CACHE_DIR = Path(get_cookies_dir())
CACHE_FILE = CACHE_DIR / "robocoders.json"
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
**kwargs
) -> AsyncResult:
timeout = ClientTimeout(total=600)
async with aiohttp.ClientSession(timeout=timeout) as session:
# Load or create access token and session ID
access_token, session_id = await cls._get_or_create_access_and_session(session)
if not access_token or not session_id:
raise Exception("Failed to initialize API interaction")
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {access_token}"
}
prompt = format_prompt(messages)
data = {
"sid": session_id,
"prompt": prompt,
"agent": model
}
async with session.post(cls.api_endpoint, headers=headers, json=data, proxy=proxy) as response:
if response.status == 401: # Unauthorized, refresh token
cls._clear_cached_data()
raise Exception("Unauthorized: Invalid token, please retry.")
elif response.status == 422:
raise Exception("Validation Error: Invalid input.")
elif response.status >= 500:
raise Exception(f"Server Error: {response.status}")
elif response.status != 200:
raise Exception(f"Unexpected Error: {response.status}")
async for line in response.content:
if line:
try:
# Decode bytes into a string
line_str = line.decode('utf-8')
response_data = json.loads(line_str)
# Get the message from the 'args.content' or 'message' field
message = (response_data.get('args', {}).get('content') or
response_data.get('message', ''))
if message:
yield message
# Check for reaching the resource limit
if (response_data.get('action') == 'message' and
response_data.get('args', {}).get('wait_for_response')):
# Automatically continue the dialog
continue_data = {
"sid": session_id,
"prompt": "continue",
"agent": model
}
async with session.post(
cls.api_endpoint,
headers=headers,
json=continue_data,
proxy=proxy
) as continue_response:
if continue_response.status == 200:
async for continue_line in continue_response.content:
if continue_line:
try:
continue_line_str = continue_line.decode('utf-8')
continue_data = json.loads(continue_line_str)
continue_message = (
continue_data.get('args', {}).get('content') or
continue_data.get('message', '')
)
if continue_message:
yield continue_message
except json.JSONDecodeError:
debug.log(f"Failed to decode continue JSON: {continue_line}")
except Exception as e:
debug.log(f"Error processing continue response: {e}")
except json.JSONDecodeError:
debug.log(f"Failed to decode JSON: {line}")
except Exception as e:
debug.log(f"Error processing response: {e}")
@staticmethod
async def _get_or_create_access_and_session(session: aiohttp.ClientSession):
RobocodersAPI.CACHE_DIR.mkdir(exist_ok=True) # Ensure cache directory exists
# Load data from cache
if RobocodersAPI.CACHE_FILE.exists():
with open(RobocodersAPI.CACHE_FILE, "r") as f:
data = json.load(f)
access_token = data.get("access_token")
session_id = data.get("sid")
# Validate loaded data
if access_token and session_id:
return access_token, session_id
# If data not valid, create new access token and session ID
access_token = await RobocodersAPI._fetch_and_cache_access_token(session)
session_id = await RobocodersAPI._create_and_cache_session(session, access_token)
return access_token, session_id
@staticmethod
async def _fetch_and_cache_access_token(session: aiohttp.ClientSession) -> str:
if not HAS_BEAUTIFULSOUP:
raise MissingRequirementsError('Install "beautifulsoup4" package | pip install -U beautifulsoup4')
return token
url_auth = 'https://api.robocoders.ai/auth'
headers_auth = {
'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36',
}
async with session.get(url_auth, headers=headers_auth) as response:
if response.status == 200:
html = await response.text()
soup = BeautifulSoup(html, 'html.parser')
token_element = soup.find('pre', id='token')
if token_element:
token = token_element.text.strip()
# Cache the token
RobocodersAPI._save_cached_data({"access_token": token})
return token
return None
@staticmethod
async def _create_and_cache_session(session: aiohttp.ClientSession, access_token: str) -> str:
url_create_session = 'https://api.robocoders.ai/create-session'
headers_create_session = {
'Authorization': f'Bearer {access_token}'
}
async with session.get(url_create_session, headers=headers_create_session) as response:
if response.status == 200:
data = await response.json()
session_id = data.get('sid')
# Cache session ID
RobocodersAPI._update_cached_data({"sid": session_id})
return session_id
elif response.status == 401:
RobocodersAPI._clear_cached_data()
raise Exception("Unauthorized: Invalid token during session creation.")
elif response.status == 422:
raise Exception("Validation Error: Check input parameters.")
return None
@staticmethod
def _save_cached_data(new_data: dict):
"""Save new data to cache file"""
RobocodersAPI.CACHE_DIR.mkdir(exist_ok=True)
RobocodersAPI.CACHE_FILE.touch(exist_ok=True)
with open(RobocodersAPI.CACHE_FILE, "w") as f:
json.dump(new_data, f)
@staticmethod
def _update_cached_data(updated_data: dict):
"""Update existing cache data with new values"""
data = {}
if RobocodersAPI.CACHE_FILE.exists():
with open(RobocodersAPI.CACHE_FILE, "r") as f:
try:
data = json.load(f)
except json.JSONDecodeError:
# If cache file is corrupted, start with empty dict
data = {}
data.update(updated_data)
with open(RobocodersAPI.CACHE_FILE, "w") as f:
json.dump(data, f)
@staticmethod
def _clear_cached_data():
"""Remove cache file"""
try:
if RobocodersAPI.CACHE_FILE.exists():
RobocodersAPI.CACHE_FILE.unlink()
except Exception as e:
debug.log(f"Error clearing cache: {e}")
@staticmethod
def _get_cached_data() -> dict:
"""Get all cached data"""
if RobocodersAPI.CACHE_FILE.exists():
try:
with open(RobocodersAPI.CACHE_FILE, "r") as f:
return json.load(f)
except json.JSONDecodeError:
return {}
return {}