gpt4free/g4f/Provider/ReplicateHome.py
kqlio67 b198d900aa
update providers and documentation with image handling improvements (#2451)
* refactor(g4f/Provider/Airforce.py): Enhance Airforce provider with dynamic model fetching

* refactor(g4f/Provider/Blackbox.py): Enhance Blackbox AI provider configuration and streamline code

* feat(g4f/Provider/RobocodersAPI.py): Add RobocodersAPI new async chat provider

* refactor(g4f/client/__init__.py): Improve provider handling in async_generate method

* refactor(g4f/models.py): Update provider configurations for multiple models

* refactor(g4f/Provider/Blackbox.py): Streamline model configuration and improve response handling

* feat(g4f/Provider/DDG.py): Enhance model support and improve conversation handling

* refactor(g4f/Provider/Copilot.py): Enhance Copilot provider with model support

* refactor(g4f/Provider/AmigoChat.py): update models and improve code structure

* chore(g4f/Provider/not_working/AIUncensored.): move AIUncensored to not_working directory

* chore(g4f/Provider/not_working/Allyfy.py): remove Allyfy provider

* Update (g4f/Provider/not_working/AIUncensored.py g4f/Provider/not_working/__init__.py)

* refactor(g4f/Provider/ChatGptEs.py): Implement format_prompt for message handling

* refactor(g4f/Provider/Blackbox.py): Update message formatting and improve code structure

* refactor(g4f/Provider/LLMPlayground.py): Enhance text generation and error handling

* refactor(g4f/Provider/needs_auth/PollinationsAI.py): move PollinationsAI to needs_auth directory

* refactor(g4f/Provider/Liaobots.py): Update Liaobots provider models and aliases

* feat(g4f/Provider/DeepInfraChat.py): Add new DeepInfra models and aliases

* Update (g4f/Provider/__init__.py)

* Update (g4f/models.py)

* g4f/models.py

* Update g4f/models.py

* Update g4f/Provider/LLMPlayground.py

* Update (g4f/models.py g4f/Provider/Airforce.py
g4f/Provider/__init__.py g4f/Provider/LLMPlayground.py)

* Update g4f/Provider/__init__.py

* refactor(g4f/Provider/Airforce.py): Enhance text generation with retry and timeout

* Update g4f/Provider/AmigoChat.py g4f/Provider/__init__.py

* refactor(g4f/Provider/Blackbox.py): update model prefixes and image handling

Fixes #2445

- Update model prefixes for gpt-4o, gemini-pro, and claude-sonnet-3.5
- Add 'gpt-3.5-turbo' alias for 'blackboxai' model
- Modify image handling in create_async_generator method
- Add 'imageGenerationMode' and 'webSearchModePrompt' flags to API request
- Remove redundant 'imageBase64' field from image data structure

* New provider (g4f/Provider/Blackbox2.py)

Support for model llama-3.1-70b text generation

* docs(docs/async_client.md): update AsyncClient API guide with minor improvements

- Improve formatting and readability of code examples
- Add line breaks for better visual separation of sections
- Fix minor typos and inconsistencies in text
- Enhance clarity of explanations in various sections
- Remove unnecessary whitespace

* feat(docs/client.md): add response_format parameter

- Add 'response_format' parameter to image generation examples
- Specify 'url' format for standard image generation
- Include 'b64_json' format for base64 encoded image response
- Update documentation to reflect new parameter usage
- Improve code examples for clarity and consistency

* docs(README.md): update usage examples and add image generation

- Update text generation example to use new Client API
- Add image generation example with Client API
- Update configuration section with new cookie setting instructions
- Add response_format parameter to image generation example
- Remove outdated information and reorganize sections
- Update contributors list

* refactor(g4f/client/__init__.py): optimize image processing and response handling

- Modify _process_image_response to handle 'url' format without local saving
- Update ImagesResponse construction to include 'created' timestamp
- Simplify image processing logic for different response formats
- Improve error handling and logging for image generation
- Enhance type hints and docstrings for better code clarity

* feat(g4f/models.py): update model providers and add new models

- Add Blackbox2 to Provider imports
- Update gpt-3.5-turbo best provider to Blackbox
- Add Blackbox2 to llama-3.1-70b best providers
- Rename dalle_3 to dall_e_3 and update its best providers
- Add new models: solar_mini, openhermes_2_5, lfm_40b, zephyr_7b, neural_7b, mythomax_13b
- Update ModelUtils.convert with new models and changes
- Remove duplicate 'dalle-3' entry in ModelUtils.convert

* refactor(Airforce): improve API handling and add authentication

- Implement API key authentication with check_api_key method
- Refactor image generation to use new imagine2 endpoint
- Improve text generation with better error handling and streaming
- Update model aliases and add new image models
- Enhance content filtering for various model outputs
- Replace StreamSession with aiohttp's ClientSession for async operations
- Simplify model fetching logic and remove redundant code
- Add is_image_model method for better model type checking
- Update class attributes for better organization and clarity

* feat(g4f/Provider/HuggingChat.py): update HuggingChat model list and aliases

Request by @TheFirstNoob
- Add 'Qwen/Qwen2.5-72B-Instruct' as the first model in the list
- Update model aliases to include 'qwen-2.5-72b'
- Reorder existing models in the list for consistency
- Remove duplicate entry for 'Qwen/Qwen2.5-72B-Instruct' in models list

* refactor(g4f/Provider/ReplicateHome.py): remove unused text models

Request by @TheFirstNoob
- Removed the 'meta/meta-llama-3-70b-instruct' and 'mistralai/mixtral-8x7b-instruct-v0.1' text models from the  list
- Updated the  list to only include the remaining text and image models
- This change simplifies the model configuration and reduces the number of available models, focusing on the core text and image models provided by Replicate

* refactor(g4f/Provider/HuggingChat.py): Move HuggingChat to needs_auth directory

Request by @TheFirstNoob

* Update (g4f/Provider/needs_auth/HuggingChat.py)

* Update g4f/models.py

* Update g4f/Provider/Airforce.py

* Update g4f/models.py g4f/Provider/needs_auth/HuggingChat.py

* Added 'Airforce' provider to the 'o1-mini' model (g4f/models.py)

* Update (g4f/Provider/Airforce.py g4f/Provider/AmigoChat.py)

* Update g4f/models.py g4f/Provider/DeepInfraChat.py g4f/Provider/Airforce.py

* Update g4f/Provider/DeepInfraChat.py

* Update (g4f/Provider/DeepInfraChat.py)

* Update g4f/Provider/Blackbox.py

* Update (docs/client.md docs/async_client.md g4f/client/__init__.py)

* Update (docs/async_client.md docs/client.md)

* Update (g4f/client/__init__.py)

---------

Co-authored-by: kqlio67 <kqlio67@users.noreply.github.com>
Co-authored-by: kqlio67 <>
Co-authored-by: H Lohaus <hlohaus@users.noreply.github.com>
2024-12-05 01:07:59 +01:00

136 lines
5.0 KiB
Python

from __future__ import annotations
import json
import asyncio
from aiohttp import ClientSession, ContentTypeError
from ..typing import AsyncResult, Messages
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..requests.aiohttp import get_connector
from ..requests.raise_for_status import raise_for_status
from .helper import format_prompt
from ..image import ImageResponse
class ReplicateHome(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://replicate.com"
api_endpoint = "https://homepage.replicate.com/api/prediction"
working = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'yorickvp/llava-13b'
image_models = [
'stability-ai/stable-diffusion-3',
'bytedance/sdxl-lightning-4step',
'playgroundai/playground-v2.5-1024px-aesthetic',
]
text_models = [
'google-deepmind/gemma-2b-it',
'yorickvp/llava-13b',
]
models = text_models + image_models
model_aliases = {
# image_models
"sd-3": "stability-ai/stable-diffusion-3",
"sdxl": "bytedance/sdxl-lightning-4step",
"playground-v2.5": "playgroundai/playground-v2.5-1024px-aesthetic",
# text_models
"gemma-2b": "google-deepmind/gemma-2b-it",
"llava-13b": "yorickvp/llava-13b",
}
model_versions = {
# image_models
'stability-ai/stable-diffusion-3': "527d2a6296facb8e47ba1eaf17f142c240c19a30894f437feee9b91cc29d8e4f",
'bytedance/sdxl-lightning-4step': "5f24084160c9089501c1b3545d9be3c27883ae2239b6f412990e82d4a6210f8f",
'playgroundai/playground-v2.5-1024px-aesthetic': "a45f82a1382bed5c7aeb861dac7c7d191b0fdf74d8d57c4a0e6ed7d4d0bf7d24",
# text_models
"google-deepmind/gemma-2b-it": "dff94eaf770e1fc211e425a50b51baa8e4cac6c39ef074681f9e39d778773626",
"yorickvp/llava-13b": "80537f9eead1a5bfa72d5ac6ea6414379be41d4d4f6679fd776e9535d1eb58bb",
}
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
prompt: str = None,
proxy: str = None,
**kwargs
) -> AsyncResult:
model = cls.get_model(model)
headers = {
"accept": "*/*",
"accept-language": "en-US,en;q=0.9",
"cache-control": "no-cache",
"content-type": "application/json",
"origin": "https://replicate.com",
"pragma": "no-cache",
"priority": "u=1, i",
"referer": "https://replicate.com/",
"sec-ch-ua": '"Not;A=Brand";v="24", "Chromium";v="128"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Linux"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-site",
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36"
}
async with ClientSession(headers=headers, connector=get_connector(proxy=proxy)) as session:
if prompt is None:
if model in cls.image_models:
prompt = messages[-1]['content']
else:
prompt = format_prompt(messages)
data = {
"model": model,
"version": cls.model_versions[model],
"input": {"prompt": prompt},
}
async with session.post(cls.api_endpoint, json=data) as response:
await raise_for_status(response)
result = await response.json()
prediction_id = result['id']
poll_url = f"https://homepage.replicate.com/api/poll?id={prediction_id}"
max_attempts = 30
delay = 5
for _ in range(max_attempts):
async with session.get(poll_url) as response:
await raise_for_status(response)
try:
result = await response.json()
except ContentTypeError:
text = await response.text()
try:
result = json.loads(text)
except json.JSONDecodeError:
raise ValueError(f"Unexpected response format: {text}")
if result['status'] == 'succeeded':
if model in cls.image_models:
image_url = result['output'][0]
yield ImageResponse(image_url, prompt)
return
else:
for chunk in result['output']:
yield chunk
break
elif result['status'] == 'failed':
raise Exception(f"Prediction failed: {result.get('error')}")
await asyncio.sleep(delay)
if result['status'] != 'succeeded':
raise Exception("Prediction timed out")