mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-12-25 12:16:17 +03:00
182 lines
6.1 KiB
Python
182 lines
6.1 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
import base64
|
|
from aiohttp import ClientSession
|
|
from typing import AsyncGenerator
|
|
|
|
from ..typing import AsyncResult, Messages
|
|
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
|
|
from ..image import ImageResponse
|
|
from .helper import format_prompt
|
|
|
|
class Nexra(AsyncGeneratorProvider, ProviderModelMixin):
|
|
url = "https://nexra.aryahcr.cc"
|
|
api_endpoint_text = "https://nexra.aryahcr.cc/api/chat/gpt"
|
|
api_endpoint_image = "https://nexra.aryahcr.cc/api/image/complements"
|
|
working = True
|
|
supports_gpt_35_turbo = True
|
|
supports_gpt_4 = True
|
|
supports_stream = True
|
|
supports_system_message = True
|
|
supports_message_history = True
|
|
|
|
default_model = 'gpt-3.5-turbo'
|
|
models = [
|
|
# Text models
|
|
'gpt-4', 'gpt-4-0613', 'gpt-4-32k', 'gpt-4-0314', 'gpt-4-32k-0314',
|
|
'gpt-3.5-turbo', 'gpt-3.5-turbo-16k', 'gpt-3.5-turbo-0613', 'gpt-3.5-turbo-16k-0613', 'gpt-3.5-turbo-0301',
|
|
'gpt-3', 'text-davinci-003', 'text-davinci-002', 'code-davinci-002',
|
|
'text-curie-001', 'text-babbage-001', 'text-ada-001',
|
|
'davinci', 'curie', 'babbage', 'ada', 'babbage-002', 'davinci-002',
|
|
# Image models
|
|
'dalle', 'dalle-mini', 'emi'
|
|
]
|
|
|
|
image_models = {"dalle", "dalle-mini", "emi"}
|
|
text_models = set(models) - image_models
|
|
|
|
model_aliases = {
|
|
"gpt-4": "gpt-4-0613",
|
|
"gpt-4": "gpt-4-32k",
|
|
"gpt-4": "gpt-4-0314",
|
|
"gpt-4": "gpt-4-32k-0314",
|
|
|
|
"gpt-3.5-turbo": "gpt-3.5-turbo-16k",
|
|
"gpt-3.5-turbo": "gpt-3.5-turbo-0613",
|
|
"gpt-3.5-turbo": "gpt-3.5-turbo-16k-0613",
|
|
"gpt-3.5-turbo": "gpt-3.5-turbo-0301",
|
|
|
|
"gpt-3": "text-davinci-003",
|
|
"gpt-3": "text-davinci-002",
|
|
"gpt-3": "code-davinci-002",
|
|
"gpt-3": "text-curie-001",
|
|
"gpt-3": "text-babbage-001",
|
|
"gpt-3": "text-ada-001",
|
|
"gpt-3": "text-ada-001",
|
|
"gpt-3": "davinci",
|
|
"gpt-3": "curie",
|
|
"gpt-3": "babbage",
|
|
"gpt-3": "ada",
|
|
"gpt-3": "babbage-002",
|
|
"gpt-3": "davinci-002",
|
|
}
|
|
|
|
@classmethod
|
|
def get_model(cls, model: str) -> str:
|
|
if model in cls.models:
|
|
return model
|
|
elif model in cls.model_aliases:
|
|
return cls.model_aliases[model]
|
|
else:
|
|
return cls.default_model
|
|
|
|
@classmethod
|
|
async def create_async_generator(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
proxy: str = None,
|
|
**kwargs
|
|
) -> AsyncGenerator[str | ImageResponse, None]:
|
|
model = cls.get_model(model)
|
|
|
|
if model in cls.image_models:
|
|
async for result in cls.create_image_async_generator(model, messages, proxy, **kwargs):
|
|
yield result
|
|
else:
|
|
async for result in cls.create_text_async_generator(model, messages, proxy, **kwargs):
|
|
yield result
|
|
|
|
@classmethod
|
|
async def create_text_async_generator(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
proxy: str = None,
|
|
**kwargs
|
|
) -> AsyncGenerator[str, None]:
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
}
|
|
async with ClientSession(headers=headers) as session:
|
|
data = {
|
|
"messages": messages,
|
|
"prompt": format_prompt(messages),
|
|
"model": model,
|
|
"markdown": False,
|
|
"stream": False,
|
|
}
|
|
async with session.post(cls.api_endpoint_text, json=data, proxy=proxy) as response:
|
|
response.raise_for_status()
|
|
result = await response.text()
|
|
json_result = json.loads(result)
|
|
yield json_result["gpt"]
|
|
|
|
@classmethod
|
|
async def create_image_async_generator(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
proxy: str = None,
|
|
**kwargs
|
|
) -> AsyncGenerator[ImageResponse | str, None]:
|
|
headers = {
|
|
"Content-Type": "application/json"
|
|
}
|
|
|
|
prompt = messages[-1]['content'] if messages else ""
|
|
|
|
data = {
|
|
"prompt": prompt,
|
|
"model": model
|
|
}
|
|
|
|
async def process_response(response_text: str) -> ImageResponse | None:
|
|
json_start = response_text.find('{')
|
|
if json_start != -1:
|
|
json_data = response_text[json_start:]
|
|
try:
|
|
response_data = json.loads(json_data)
|
|
image_data = response_data.get('images', [])[0]
|
|
|
|
if image_data.startswith('data:image/'):
|
|
return ImageResponse([image_data], "Generated image")
|
|
|
|
try:
|
|
base64.b64decode(image_data)
|
|
data_uri = f"data:image/jpeg;base64,{image_data}"
|
|
return ImageResponse([data_uri], "Generated image")
|
|
except:
|
|
print("Invalid base64 data")
|
|
return None
|
|
except json.JSONDecodeError:
|
|
print("Failed to parse JSON.")
|
|
else:
|
|
print("No JSON data found in the response.")
|
|
return None
|
|
|
|
async with ClientSession(headers=headers) as session:
|
|
async with session.post(cls.api_endpoint_image, json=data, proxy=proxy) as response:
|
|
response.raise_for_status()
|
|
response_text = await response.text()
|
|
|
|
image_response = await process_response(response_text)
|
|
if image_response:
|
|
yield image_response
|
|
else:
|
|
yield "Failed to process image data."
|
|
|
|
@classmethod
|
|
async def create_async(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
proxy: str = None,
|
|
**kwargs
|
|
) -> str:
|
|
async for response in cls.create_async_generator(model, messages, proxy, **kwargs):
|
|
if isinstance(response, ImageResponse):
|
|
return response.images[0]
|
|
return response
|