move queuing to embedding_queue functionality and update embedding provider to include trait items for max tokens per batch"

Co-authored-by: Max <max@zed.dev>
This commit is contained in:
KCaverly 2023-08-30 16:01:28 -04:00
parent 9781047156
commit 76ce52df4e
5 changed files with 295 additions and 91 deletions

View File

@ -53,36 +53,30 @@ struct OpenAIEmbeddingUsage {
#[async_trait]
pub trait EmbeddingProvider: Sync + Send {
async fn embed_batch(&self, spans: Vec<&str>) -> Result<Vec<Vec<f32>>>;
fn count_tokens(&self, span: &str) -> usize;
fn should_truncate(&self, span: &str) -> bool;
fn truncate(&self, span: &str) -> String;
async fn embed_batch(&self, spans: Vec<String>) -> Result<Vec<Vec<f32>>>;
fn max_tokens_per_batch(&self) -> usize;
fn truncate(&self, span: &str) -> (String, usize);
}
pub struct DummyEmbeddings {}
#[async_trait]
impl EmbeddingProvider for DummyEmbeddings {
async fn embed_batch(&self, spans: Vec<&str>) -> Result<Vec<Vec<f32>>> {
async fn embed_batch(&self, spans: Vec<String>) -> Result<Vec<Vec<f32>>> {
// 1024 is the OpenAI Embeddings size for ada models.
// the model we will likely be starting with.
let dummy_vec = vec![0.32 as f32; 1536];
return Ok(vec![dummy_vec; spans.len()]);
}
fn count_tokens(&self, span: &str) -> usize {
// For Dummy Providers, we are going to use OpenAI tokenization for ease
let tokens = OPENAI_BPE_TOKENIZER.encode_with_special_tokens(span);
tokens.len()
fn max_tokens_per_batch(&self) -> usize {
OPENAI_INPUT_LIMIT
}
fn should_truncate(&self, span: &str) -> bool {
self.count_tokens(span) > OPENAI_INPUT_LIMIT
}
fn truncate(&self, span: &str) -> String {
fn truncate(&self, span: &str) -> (String, usize) {
let mut tokens = OPENAI_BPE_TOKENIZER.encode_with_special_tokens(span);
let output = if tokens.len() > OPENAI_INPUT_LIMIT {
let token_count = tokens.len();
let output = if token_count > OPENAI_INPUT_LIMIT {
tokens.truncate(OPENAI_INPUT_LIMIT);
OPENAI_BPE_TOKENIZER
.decode(tokens)
@ -92,7 +86,7 @@ impl EmbeddingProvider for DummyEmbeddings {
span.to_string()
};
output
(output, token_count)
}
}
@ -125,19 +119,14 @@ impl OpenAIEmbeddings {
#[async_trait]
impl EmbeddingProvider for OpenAIEmbeddings {
fn count_tokens(&self, span: &str) -> usize {
// For Dummy Providers, we are going to use OpenAI tokenization for ease
let tokens = OPENAI_BPE_TOKENIZER.encode_with_special_tokens(span);
tokens.len()
fn max_tokens_per_batch(&self) -> usize {
OPENAI_INPUT_LIMIT
}
fn should_truncate(&self, span: &str) -> bool {
self.count_tokens(span) > OPENAI_INPUT_LIMIT
}
fn truncate(&self, span: &str) -> String {
fn truncate(&self, span: &str) -> (String, usize) {
let mut tokens = OPENAI_BPE_TOKENIZER.encode_with_special_tokens(span);
let output = if tokens.len() > OPENAI_INPUT_LIMIT {
let token_count = tokens.len();
let output = if token_count > OPENAI_INPUT_LIMIT {
tokens.truncate(OPENAI_INPUT_LIMIT);
OPENAI_BPE_TOKENIZER
.decode(tokens)
@ -147,10 +136,10 @@ impl EmbeddingProvider for OpenAIEmbeddings {
span.to_string()
};
output
(output, token_count)
}
async fn embed_batch(&self, spans: Vec<&str>) -> Result<Vec<Vec<f32>>> {
async fn embed_batch(&self, spans: Vec<String>) -> Result<Vec<Vec<f32>>> {
const BACKOFF_SECONDS: [usize; 4] = [3, 5, 15, 45];
const MAX_RETRIES: usize = 4;
@ -160,9 +149,7 @@ impl EmbeddingProvider for OpenAIEmbeddings {
let mut request_number = 0;
let mut request_timeout: u64 = 10;
let mut truncated = false;
let mut response: Response<AsyncBody>;
let mut spans: Vec<String> = spans.iter().map(|x| x.to_string()).collect();
while request_number < MAX_RETRIES {
response = self
.send_request(

View File

@ -0,0 +1,140 @@
use std::{mem, ops::Range, path::PathBuf, sync::Arc, time::SystemTime};
use gpui::AppContext;
use parking_lot::Mutex;
use smol::channel;
use crate::{embedding::EmbeddingProvider, parsing::Document, JobHandle};
#[derive(Clone)]
pub struct FileToEmbed {
pub worktree_id: i64,
pub path: PathBuf,
pub mtime: SystemTime,
pub documents: Vec<Document>,
pub job_handle: JobHandle,
}
impl std::fmt::Debug for FileToEmbed {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("FileToEmbed")
.field("worktree_id", &self.worktree_id)
.field("path", &self.path)
.field("mtime", &self.mtime)
.field("document", &self.documents)
.finish_non_exhaustive()
}
}
impl PartialEq for FileToEmbed {
fn eq(&self, other: &Self) -> bool {
self.worktree_id == other.worktree_id
&& self.path == other.path
&& self.mtime == other.mtime
&& self.documents == other.documents
}
}
pub struct EmbeddingQueue {
embedding_provider: Arc<dyn EmbeddingProvider>,
pending_batch: Vec<FileToEmbedFragment>,
pending_batch_token_count: usize,
finished_files_tx: channel::Sender<FileToEmbed>,
finished_files_rx: channel::Receiver<FileToEmbed>,
}
pub struct FileToEmbedFragment {
file: Arc<Mutex<FileToEmbed>>,
document_range: Range<usize>,
}
impl EmbeddingQueue {
pub fn new(embedding_provider: Arc<dyn EmbeddingProvider>) -> Self {
let (finished_files_tx, finished_files_rx) = channel::unbounded();
Self {
embedding_provider,
pending_batch: Vec::new(),
pending_batch_token_count: 0,
finished_files_tx,
finished_files_rx,
}
}
pub fn push(&mut self, file: FileToEmbed, cx: &mut AppContext) {
let file = Arc::new(Mutex::new(file));
self.pending_batch.push(FileToEmbedFragment {
file: file.clone(),
document_range: 0..0,
});
let mut fragment_range = &mut self.pending_batch.last_mut().unwrap().document_range;
for (ix, document) in file.lock().documents.iter().enumerate() {
let next_token_count = self.pending_batch_token_count + document.token_count;
if next_token_count > self.embedding_provider.max_tokens_per_batch() {
let range_end = fragment_range.end;
self.flush(cx);
self.pending_batch.push(FileToEmbedFragment {
file: file.clone(),
document_range: range_end..range_end,
});
fragment_range = &mut self.pending_batch.last_mut().unwrap().document_range;
}
fragment_range.end = ix + 1;
self.pending_batch_token_count += document.token_count;
}
}
pub fn flush(&mut self, cx: &mut AppContext) {
let batch = mem::take(&mut self.pending_batch);
self.pending_batch_token_count = 0;
if batch.is_empty() {
return;
}
let finished_files_tx = self.finished_files_tx.clone();
let embedding_provider = self.embedding_provider.clone();
cx.background().spawn(async move {
let mut spans = Vec::new();
for fragment in &batch {
let file = fragment.file.lock();
spans.extend(
file.documents[fragment.document_range.clone()]
.iter()
.map(|d| d.content.clone()),
);
}
match embedding_provider.embed_batch(spans).await {
Ok(embeddings) => {
let mut embeddings = embeddings.into_iter();
for fragment in batch {
for document in
&mut fragment.file.lock().documents[fragment.document_range.clone()]
{
if let Some(embedding) = embeddings.next() {
document.embedding = embedding;
} else {
//
log::error!("number of embeddings returned different from number of documents");
}
}
if let Some(file) = Arc::into_inner(fragment.file) {
finished_files_tx.try_send(file.into_inner()).unwrap();
}
}
}
Err(error) => {
log::error!("{:?}", error);
}
}
})
.detach();
}
pub fn finished_files(&self) -> channel::Receiver<FileToEmbed> {
self.finished_files_rx.clone()
}
}

View File

@ -72,8 +72,7 @@ impl CodeContextRetriever {
let mut sha1 = Sha1::new();
sha1.update(&document_span);
let token_count = self.embedding_provider.count_tokens(&document_span);
let document_span = self.embedding_provider.truncate(&document_span);
let (document_span, token_count) = self.embedding_provider.truncate(&document_span);
Ok(vec![Document {
range: 0..content.len(),
@ -93,8 +92,7 @@ impl CodeContextRetriever {
let mut sha1 = Sha1::new();
sha1.update(&document_span);
let token_count = self.embedding_provider.count_tokens(&document_span);
let document_span = self.embedding_provider.truncate(&document_span);
let (document_span, token_count) = self.embedding_provider.truncate(&document_span);
Ok(vec![Document {
range: 0..content.len(),
@ -183,8 +181,8 @@ impl CodeContextRetriever {
.replace("<language>", language_name.as_ref())
.replace("item", &document.content);
let token_count = self.embedding_provider.count_tokens(&document_content);
let document_content = self.embedding_provider.truncate(&document_content);
let (document_content, token_count) =
self.embedding_provider.truncate(&document_content);
document.content = document_content;
document.token_count = token_count;

View File

@ -1,14 +1,16 @@
use crate::{
db::dot,
embedding::{DummyEmbeddings, EmbeddingProvider},
embedding_queue::EmbeddingQueue,
parsing::{subtract_ranges, CodeContextRetriever, Document},
semantic_index_settings::SemanticIndexSettings,
SearchResult, SemanticIndex,
FileToEmbed, JobHandle, SearchResult, SemanticIndex,
};
use anyhow::Result;
use async_trait::async_trait;
use gpui::{Task, TestAppContext};
use language::{Language, LanguageConfig, LanguageRegistry, ToOffset};
use parking_lot::Mutex;
use pretty_assertions::assert_eq;
use project::{project_settings::ProjectSettings, search::PathMatcher, FakeFs, Fs, Project};
use rand::{rngs::StdRng, Rng};
@ -20,8 +22,10 @@ use std::{
atomic::{self, AtomicUsize},
Arc,
},
time::SystemTime,
};
use unindent::Unindent;
use util::RandomCharIter;
#[ctor::ctor]
fn init_logger() {
@ -32,11 +36,7 @@ fn init_logger() {
#[gpui::test]
async fn test_semantic_index(cx: &mut TestAppContext) {
cx.update(|cx| {
cx.set_global(SettingsStore::test(cx));
settings::register::<SemanticIndexSettings>(cx);
settings::register::<ProjectSettings>(cx);
});
init_test(cx);
let fs = FakeFs::new(cx.background());
fs.insert_tree(
@ -75,7 +75,7 @@ async fn test_semantic_index(cx: &mut TestAppContext) {
let db_path = db_dir.path().join("db.sqlite");
let embedding_provider = Arc::new(FakeEmbeddingProvider::default());
let store = SemanticIndex::new(
let semantic_index = SemanticIndex::new(
fs.clone(),
db_path,
embedding_provider.clone(),
@ -87,13 +87,13 @@ async fn test_semantic_index(cx: &mut TestAppContext) {
let project = Project::test(fs.clone(), ["/the-root".as_ref()], cx).await;
let _ = store
let _ = semantic_index
.update(cx, |store, cx| {
store.initialize_project(project.clone(), cx)
})
.await;
let (file_count, outstanding_file_count) = store
let (file_count, outstanding_file_count) = semantic_index
.update(cx, |store, cx| store.index_project(project.clone(), cx))
.await
.unwrap();
@ -101,7 +101,7 @@ async fn test_semantic_index(cx: &mut TestAppContext) {
cx.foreground().run_until_parked();
assert_eq!(*outstanding_file_count.borrow(), 0);
let search_results = store
let search_results = semantic_index
.update(cx, |store, cx| {
store.search_project(
project.clone(),
@ -129,7 +129,7 @@ async fn test_semantic_index(cx: &mut TestAppContext) {
// Test Include Files Functonality
let include_files = vec![PathMatcher::new("*.rs").unwrap()];
let exclude_files = vec![PathMatcher::new("*.rs").unwrap()];
let rust_only_search_results = store
let rust_only_search_results = semantic_index
.update(cx, |store, cx| {
store.search_project(
project.clone(),
@ -153,7 +153,7 @@ async fn test_semantic_index(cx: &mut TestAppContext) {
cx,
);
let no_rust_search_results = store
let no_rust_search_results = semantic_index
.update(cx, |store, cx| {
store.search_project(
project.clone(),
@ -189,7 +189,7 @@ async fn test_semantic_index(cx: &mut TestAppContext) {
cx.foreground().run_until_parked();
let prev_embedding_count = embedding_provider.embedding_count();
let (file_count, outstanding_file_count) = store
let (file_count, outstanding_file_count) = semantic_index
.update(cx, |store, cx| store.index_project(project.clone(), cx))
.await
.unwrap();
@ -204,6 +204,69 @@ async fn test_semantic_index(cx: &mut TestAppContext) {
);
}
#[gpui::test(iterations = 10)]
async fn test_embedding_batching(cx: &mut TestAppContext, mut rng: StdRng) {
let (outstanding_job_count, _) = postage::watch::channel_with(0);
let outstanding_job_count = Arc::new(Mutex::new(outstanding_job_count));
let files = (1..=3)
.map(|file_ix| FileToEmbed {
worktree_id: 5,
path: format!("path-{file_ix}").into(),
mtime: SystemTime::now(),
documents: (0..rng.gen_range(4..22))
.map(|document_ix| {
let content_len = rng.gen_range(10..100);
Document {
range: 0..10,
embedding: Vec::new(),
name: format!("document {document_ix}"),
content: RandomCharIter::new(&mut rng)
.with_simple_text()
.take(content_len)
.collect(),
sha1: rng.gen(),
token_count: rng.gen_range(10..30),
}
})
.collect(),
job_handle: JobHandle::new(&outstanding_job_count),
})
.collect::<Vec<_>>();
let embedding_provider = Arc::new(FakeEmbeddingProvider::default());
let mut queue = EmbeddingQueue::new(embedding_provider.clone());
let finished_files = cx.update(|cx| {
for file in &files {
queue.push(file.clone(), cx);
}
queue.flush(cx);
queue.finished_files()
});
cx.foreground().run_until_parked();
let mut embedded_files: Vec<_> = files
.iter()
.map(|_| finished_files.try_recv().expect("no finished file"))
.collect();
let expected_files: Vec<_> = files
.iter()
.map(|file| {
let mut file = file.clone();
for doc in &mut file.documents {
doc.embedding = embedding_provider.embed_sync(doc.content.as_ref());
}
file
})
.collect();
embedded_files.sort_by_key(|f| f.path.clone());
assert_eq!(embedded_files, expected_files);
}
#[track_caller]
fn assert_search_results(
actual: &[SearchResult],
@ -1220,47 +1283,42 @@ impl FakeEmbeddingProvider {
fn embedding_count(&self) -> usize {
self.embedding_count.load(atomic::Ordering::SeqCst)
}
fn embed_sync(&self, span: &str) -> Vec<f32> {
let mut result = vec![1.0; 26];
for letter in span.chars() {
let letter = letter.to_ascii_lowercase();
if letter as u32 >= 'a' as u32 {
let ix = (letter as u32) - ('a' as u32);
if ix < 26 {
result[ix as usize] += 1.0;
}
}
}
let norm = result.iter().map(|x| x * x).sum::<f32>().sqrt();
for x in &mut result {
*x /= norm;
}
result
}
}
#[async_trait]
impl EmbeddingProvider for FakeEmbeddingProvider {
fn count_tokens(&self, span: &str) -> usize {
span.len()
fn truncate(&self, span: &str) -> (String, usize) {
(span.to_string(), 1)
}
fn should_truncate(&self, span: &str) -> bool {
false
fn max_tokens_per_batch(&self) -> usize {
200
}
fn truncate(&self, span: &str) -> String {
span.to_string()
}
async fn embed_batch(&self, spans: Vec<&str>) -> Result<Vec<Vec<f32>>> {
async fn embed_batch(&self, spans: Vec<String>) -> Result<Vec<Vec<f32>>> {
self.embedding_count
.fetch_add(spans.len(), atomic::Ordering::SeqCst);
Ok(spans
.iter()
.map(|span| {
let mut result = vec![1.0; 26];
for letter in span.chars() {
let letter = letter.to_ascii_lowercase();
if letter as u32 >= 'a' as u32 {
let ix = (letter as u32) - ('a' as u32);
if ix < 26 {
result[ix as usize] += 1.0;
}
}
}
let norm = result.iter().map(|x| x * x).sum::<f32>().sqrt();
for x in &mut result {
*x /= norm;
}
result
})
.collect())
Ok(spans.iter().map(|span| self.embed_sync(span)).collect())
}
}
@ -1704,3 +1762,11 @@ fn test_subtract_ranges() {
assert_eq!(subtract_ranges(&[0..5], &[1..2]), &[0..1, 2..5]);
}
fn init_test(cx: &mut TestAppContext) {
cx.update(|cx| {
cx.set_global(SettingsStore::test(cx));
settings::register::<SemanticIndexSettings>(cx);
settings::register::<ProjectSettings>(cx);
});
}

View File

@ -260,11 +260,22 @@ pub fn defer<F: FnOnce()>(f: F) -> impl Drop {
Defer(Some(f))
}
pub struct RandomCharIter<T: Rng>(T);
pub struct RandomCharIter<T: Rng> {
rng: T,
simple_text: bool,
}
impl<T: Rng> RandomCharIter<T> {
pub fn new(rng: T) -> Self {
Self(rng)
Self {
rng,
simple_text: std::env::var("SIMPLE_TEXT").map_or(false, |v| !v.is_empty()),
}
}
pub fn with_simple_text(mut self) -> Self {
self.simple_text = true;
self
}
}
@ -272,25 +283,27 @@ impl<T: Rng> Iterator for RandomCharIter<T> {
type Item = char;
fn next(&mut self) -> Option<Self::Item> {
if std::env::var("SIMPLE_TEXT").map_or(false, |v| !v.is_empty()) {
return if self.0.gen_range(0..100) < 5 {
if self.simple_text {
return if self.rng.gen_range(0..100) < 5 {
Some('\n')
} else {
Some(self.0.gen_range(b'a'..b'z' + 1).into())
Some(self.rng.gen_range(b'a'..b'z' + 1).into())
};
}
match self.0.gen_range(0..100) {
match self.rng.gen_range(0..100) {
// whitespace
0..=19 => [' ', '\n', '\r', '\t'].choose(&mut self.0).copied(),
0..=19 => [' ', '\n', '\r', '\t'].choose(&mut self.rng).copied(),
// two-byte greek letters
20..=32 => char::from_u32(self.0.gen_range(('α' as u32)..('ω' as u32 + 1))),
20..=32 => char::from_u32(self.rng.gen_range(('α' as u32)..('ω' as u32 + 1))),
// // three-byte characters
33..=45 => ['✋', '✅', '❌', '❎', '⭐'].choose(&mut self.0).copied(),
33..=45 => ['✋', '✅', '❌', '❎', '⭐']
.choose(&mut self.rng)
.copied(),
// // four-byte characters
46..=58 => ['🍐', '🏀', '🍗', '🎉'].choose(&mut self.0).copied(),
46..=58 => ['🍐', '🏀', '🍗', '🎉'].choose(&mut self.rng).copied(),
// ascii letters
_ => Some(self.0.gen_range(b'a'..b'z' + 1).into()),
_ => Some(self.rng.gen_range(b'a'..b'z' + 1).into()),
}
}
}