Finish documenting the action, asset, color, and element modules in GPUI

Remove SmallVec from the public API of GPUI
This commit is contained in:
Mikayla 2024-01-20 18:31:31 -08:00
parent 3b84291343
commit a44aae9e91
No known key found for this signature in database
23 changed files with 197 additions and 83 deletions

View File

@ -37,8 +37,8 @@ impl RenderOnce for FacePile {
}
impl ParentElement for FacePile {
fn children_mut(&mut self) -> &mut SmallVec<[AnyElement; 2]> {
&mut self.faces
fn extend(&mut self, elements: impl IntoIterator<Item = AnyElement>) {
self.faces.extend(elements);
}
}

View File

@ -26,8 +26,8 @@ impl CollabNotification {
}
impl ParentElement for CollabNotification {
fn children_mut(&mut self) -> &mut SmallVec<[AnyElement; 2]> {
&mut self.children
fn extend(&mut self, elements: impl Iterator<Item = AnyElement>) {
self.children.extend(elements)
}
}

View File

@ -40,14 +40,25 @@ use std::any::{Any, TypeId};
/// register_action!(Paste);
/// ```
pub trait Action: 'static {
/// Clone the action into a new box
fn boxed_clone(&self) -> Box<dyn Action>;
/// Cast the action to the any type
fn as_any(&self) -> &dyn Any;
/// Do a partial equality check on this action and the other
fn partial_eq(&self, action: &dyn Action) -> bool;
/// Get the name of this action, for displaying in UI
fn name(&self) -> &str;
/// Get the name of this action for debugging
fn debug_name() -> &'static str
where
Self: Sized;
/// Build this action from a JSON value. This is used to construct actions from the keymap.
/// A value of `{}` will be passed for actions that don't have any parameters.
fn build(value: serde_json::Value) -> Result<Box<dyn Action>>
where
Self: Sized;
@ -62,6 +73,7 @@ impl std::fmt::Debug for dyn Action {
}
impl dyn Action {
/// Get the type id of this action
pub fn type_id(&self) -> TypeId {
self.as_any().type_id()
}
@ -170,6 +182,7 @@ impl ActionRegistry {
macro_rules! actions {
($namespace:path, [ $($name:ident),* $(,)? ]) => {
$(
/// The `$name` action see [`gpui::actions!`]
#[derive(::std::cmp::PartialEq, ::std::clone::Clone, ::std::default::Default, ::std::fmt::Debug, gpui::private::serde_derive::Deserialize)]
#[serde(crate = "gpui::private::serde")]
pub struct $name;

View File

@ -1,5 +1,3 @@
#![deny(missing_docs)]
mod async_context;
mod entity_map;
mod model_context;

View File

@ -1,5 +1,3 @@
#![deny(missing_docs)]
use crate::{
Action, AnyElement, AnyView, AnyWindowHandle, AppCell, AppContext, AsyncAppContext,
AvailableSpace, BackgroundExecutor, Bounds, ClipboardItem, Context, Entity, EventEmitter,

View File

@ -8,8 +8,12 @@ use std::{
sync::atomic::{AtomicUsize, Ordering::SeqCst},
};
/// A source of assets for this app to use.
pub trait AssetSource: 'static + Send + Sync {
/// Load the given asset from the source path.
fn load(&self, path: &str) -> Result<Cow<[u8]>>;
/// List the assets at the given path.
fn list(&self, path: &str) -> Result<Vec<SharedString>>;
}
@ -26,15 +30,19 @@ impl AssetSource for () {
}
}
/// A unique identifier for the image cache
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct ImageId(usize);
/// A cached and processed image.
pub struct ImageData {
/// The ID associated with this image
pub id: ImageId,
data: ImageBuffer<Bgra<u8>, Vec<u8>>,
}
impl ImageData {
/// Create a new image from the given data.
pub fn new(data: ImageBuffer<Bgra<u8>, Vec<u8>>) -> Self {
static NEXT_ID: AtomicUsize = AtomicUsize::new(0);
@ -44,10 +52,12 @@ impl ImageData {
}
}
/// Convert this image into a byte slice.
pub fn as_bytes(&self) -> &[u8] {
&self.data
}
/// Get the size of this image, in pixels
pub fn size(&self) -> Size<DevicePixels> {
let (width, height) = self.data.dimensions();
size(width.into(), height.into())

View File

@ -2,6 +2,7 @@ use anyhow::bail;
use serde::de::{self, Deserialize, Deserializer, Visitor};
use std::fmt;
/// Convert an RGB hex color code number to a color type
pub fn rgb<C: From<Rgba>>(hex: u32) -> C {
let r = ((hex >> 16) & 0xFF) as f32 / 255.0;
let g = ((hex >> 8) & 0xFF) as f32 / 255.0;
@ -9,6 +10,7 @@ pub fn rgb<C: From<Rgba>>(hex: u32) -> C {
Rgba { r, g, b, a: 1.0 }.into()
}
/// Convert an RGBA hex color code number to [`Rgba`]
pub fn rgba(hex: u32) -> Rgba {
let r = ((hex >> 24) & 0xFF) as f32 / 255.0;
let g = ((hex >> 16) & 0xFF) as f32 / 255.0;
@ -17,11 +19,16 @@ pub fn rgba(hex: u32) -> Rgba {
Rgba { r, g, b, a }
}
/// An RGBA color
#[derive(PartialEq, Clone, Copy, Default)]
pub struct Rgba {
/// The red component of the color, in the range 0.0 to 1.0
pub r: f32,
/// The green component of the color, in the range 0.0 to 1.0
pub g: f32,
/// The blue component of the color, in the range 0.0 to 1.0
pub b: f32,
/// The alpha component of the color, in the range 0.0 to 1.0
pub a: f32,
}
@ -32,6 +39,8 @@ impl fmt::Debug for Rgba {
}
impl Rgba {
/// Create a new [`Rgba`] color by blending this and another color together
/// TODO: find the source for this algorithm
pub fn blend(&self, other: Rgba) -> Self {
if other.a >= 1.0 {
other
@ -165,12 +174,20 @@ impl TryFrom<&'_ str> for Rgba {
}
}
/// An HSLA color
#[derive(Default, Copy, Clone, Debug)]
#[repr(C)]
pub struct Hsla {
/// Hue, in a range from 0 to 1
pub h: f32,
/// Saturation, in a range from 0 to 1
pub s: f32,
/// Lightness, in a range from 0 to 1
pub l: f32,
/// Alpha, in a range from 0 to 1
pub a: f32,
}
@ -203,38 +220,9 @@ impl Ord for Hsla {
}
}
impl Hsla {
pub fn to_rgb(self) -> Rgba {
self.into()
}
pub fn red() -> Self {
red()
}
pub fn green() -> Self {
green()
}
pub fn blue() -> Self {
blue()
}
pub fn black() -> Self {
black()
}
pub fn white() -> Self {
white()
}
pub fn transparent_black() -> Self {
transparent_black()
}
}
impl Eq for Hsla {}
/// Construct an [`Hsla`] object from plain values
pub fn hsla(h: f32, s: f32, l: f32, a: f32) -> Hsla {
Hsla {
h: h.clamp(0., 1.),
@ -244,6 +232,7 @@ pub fn hsla(h: f32, s: f32, l: f32, a: f32) -> Hsla {
}
}
/// Pure black in [`Hsla`]
pub fn black() -> Hsla {
Hsla {
h: 0.,
@ -253,6 +242,7 @@ pub fn black() -> Hsla {
}
}
/// Transparent black in [`Hsla`]
pub fn transparent_black() -> Hsla {
Hsla {
h: 0.,
@ -262,6 +252,7 @@ pub fn transparent_black() -> Hsla {
}
}
/// Pure white in [`Hsla`]
pub fn white() -> Hsla {
Hsla {
h: 0.,
@ -271,6 +262,7 @@ pub fn white() -> Hsla {
}
}
/// The color red in [`Hsla`]
pub fn red() -> Hsla {
Hsla {
h: 0.,
@ -280,6 +272,7 @@ pub fn red() -> Hsla {
}
}
/// The color blue in [`Hsla`]
pub fn blue() -> Hsla {
Hsla {
h: 0.6,
@ -289,6 +282,7 @@ pub fn blue() -> Hsla {
}
}
/// The color green in [`Hsla`]
pub fn green() -> Hsla {
Hsla {
h: 0.33,
@ -298,6 +292,7 @@ pub fn green() -> Hsla {
}
}
/// The color yellow in [`Hsla`]
pub fn yellow() -> Hsla {
Hsla {
h: 0.16,
@ -308,6 +303,41 @@ pub fn yellow() -> Hsla {
}
impl Hsla {
/// Converts this HSLA color to an RGBA color.
pub fn to_rgb(self) -> Rgba {
self.into()
}
/// The color red
pub fn red() -> Self {
red()
}
/// The color green
pub fn green() -> Self {
green()
}
/// The color blue
pub fn blue() -> Self {
blue()
}
/// The color black
pub fn black() -> Self {
black()
}
/// The color white
pub fn white() -> Self {
white()
}
/// The color transparent black
pub fn transparent_black() -> Self {
transparent_black()
}
/// Returns true if the HSLA color is fully transparent, false otherwise.
pub fn is_transparent(&self) -> bool {
self.a == 0.0
@ -339,6 +369,7 @@ impl Hsla {
}
}
/// Returns a new HSLA color with the same hue, and lightness, but with no saturation.
pub fn grayscale(&self) -> Self {
Hsla {
h: self.h,

View File

@ -1,3 +1,39 @@
//! Elements are the workhorses of GPUI. They are responsible for laying out and painting all of
//! the contents of a window. Elements form a tree and are laid out according to the web layout
//! standards as implemented by [taffy](https://github.com/DioxusLabs/taffy). Most of the time,
//! you won't need to interact with this module or these APIs directly. Elements provide their
//! own APIs and GPUI, or other element implementation, uses the APIs in this module to convert
//! that element tree into the pixels you see on the screen.
//!
//! # Element Basics
//!
//! Elements are constructed by calling [`Render::render()`] on the root view of the window, which
//! which recursively constructs the element tree from the current state of the application.
//! These elements are then laid out by Taffy, and painted to the screen according to their own
//! implementation of [`Element::paint()`]. Before the start of the next frame, the entire element
//! tree and any callbacks they have registered with GPUI are dropped and the process repeats.
//!
//! But some state is too simple and voluminous to store in every view that needs it, e.g.
//! whether a hover has been started or not. For this, GPUI provides the [`Element::State`], type.
//! If an element returns an [`ElementId`] from [`IntoElement::element_id()`], and that element id
//! appears in the same place relative to other views and ElementIds in the frame, then the previous
//! frame's state will be passed to the element's layout and paint methods.
//!
//! # Implementing your own elements
//!
//! Elements are intended to be the low level, imperative API to GPUI. They are responsible for upholding,
//! or breaking, GPUI's features as they deem nescessary. As an example, most GPUI elements are expected
//! to stay in the bounds that their parent element gives them. But with [`WindowContext::break_content_mask`],
//! you can ignore this restriction and paint anywhere inside of the window's bounds. This is useful for overlays
//! and popups and anything else that shows up 'on top' of other elements.
//! With great power, comes great responsibility.
//!
//! However, most of the time, you won't need to implement your own elements. GPUI provides a number of
//! elements that should cover most common use cases out of the box and it's recommended that you use those.
//! to construct `components`, using the `RenderOnce` trait and the `#[derive(IntoElement)]` macro. Only implement
//! components when you need to take manual control of the layout and painting process, such as when using
//! your own custom layout algorithm or rendering a code editor.
use crate::{
util::FluentBuilder, ArenaBox, AvailableSpace, BorrowWindow, Bounds, ElementId, LayoutId,
Pixels, Point, Size, ViewContext, WindowContext, ELEMENT_ARENA,
@ -7,20 +43,27 @@ pub(crate) use smallvec::SmallVec;
use std::{any::Any, fmt::Debug};
/// Implemented by types that participate in laying out and painting the contents of a window.
/// Elements form a tree and are laid out according to web-based layout rules.
/// Rather than calling methods on implementers of this trait directly, you'll usually call `into_any` to convert them into an AnyElement, which manages state internally.
/// You can create custom elements by implementing this trait.
/// Elements form a tree and are laid out according to web-based layout rules, as implemented by Taffy.
/// You can create custom elements by implementing this trait, see the module-level documentation
/// for more details.
pub trait Element: 'static + IntoElement {
/// The type of state to store for this element between frames. See the module-level documentation
/// for details.
type State: 'static;
/// Before an element can be painted, we need to know where it's going to be and how big it is.
/// Use this method to request a layout from Taffy and initialize the element's state.
fn request_layout(
&mut self,
state: Option<Self::State>,
cx: &mut WindowContext,
) -> (LayoutId, Self::State);
/// Once layout has been completed, this method will be called to paint the element to the screen.
/// The state argument is the same state that was returned from [`Element::request_layout()`].
fn paint(&mut self, bounds: Bounds<Pixels>, state: &mut Self::State, cx: &mut WindowContext);
/// Convert this element into a dynamically-typed [`AnyElement`].
fn into_any(self) -> AnyElement {
AnyElement::new(self)
}
@ -29,6 +72,7 @@ pub trait Element: 'static + IntoElement {
/// Implemented by any type that can be converted into an element.
pub trait IntoElement: Sized {
/// The specific type of element into which the implementing type is converted.
/// Useful for converting other types into elements automatically, like Strings
type Element: Element;
/// The [`ElementId`] of self once converted into an [`Element`].
@ -81,7 +125,10 @@ pub trait IntoElement: Sized {
impl<T: IntoElement> FluentBuilder for T {}
/// An object that can be drawn to the screen. This is the trait that distinguishes `Views` from
/// models. Views are drawn to the screen and care about the current window's state, models are not and do not.
pub trait Render: 'static + Sized {
/// Render this view into an element tree.
fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement;
}
@ -92,35 +139,49 @@ impl Render for () {
}
/// You can derive [`IntoElement`] on any type that implements this trait.
/// It is used to allow views to be expressed in terms of abstract data.
/// It is used to construct reusable `components` out of plain data. Think of
/// components as a recipe for a certain pattern of elements. RenderOnce allows
/// you to invoke this pattern, without breaking the fluent builder pattern of
/// the element APIs.
pub trait RenderOnce: 'static {
/// Render this component into an element tree. Note that this method
/// takes ownership of self, as compared to [`Render::render()`] method
/// which takes a mutable reference.
fn render(self, cx: &mut WindowContext) -> impl IntoElement;
}
/// This is a helper trait to provide a uniform interface for constructing elements that
/// can accept any number of any kind of child elements
pub trait ParentElement {
fn children_mut(&mut self) -> &mut SmallVec<[AnyElement; 2]>;
/// Extend this element's children with the given child elements.
fn extend(&mut self, elements: impl Iterator<Item = AnyElement>);
/// Add a single child element to this element.
fn child(mut self, child: impl IntoElement) -> Self
where
Self: Sized,
{
self.children_mut().push(child.into_element().into_any());
self.extend(std::iter::once(child.into_element().into_any()));
self
}
/// Add multiple child elements to this element.
fn children(mut self, children: impl IntoIterator<Item = impl IntoElement>) -> Self
where
Self: Sized,
{
self.children_mut()
.extend(children.into_iter().map(|child| child.into_any_element()));
self.extend(children.into_iter().map(|child| child.into_any_element()));
self
}
}
/// An element for rendering components. An implementation detail of the [`IntoElement`] derive macro
/// for [`RenderOnce`]
#[doc(hidden)]
pub struct Component<C: RenderOnce>(Option<C>);
impl<C: RenderOnce> Component<C> {
/// Create a new component from the given RenderOnce type.
pub fn new(component: C) -> Self {
Component(Some(component))
}
@ -156,8 +217,9 @@ impl<C: RenderOnce> IntoElement for Component<C> {
}
}
/// A globally unique identifier for an element, used to track state across frames.
#[derive(Deref, DerefMut, Default, Clone, Debug, Eq, PartialEq, Hash)]
pub struct GlobalElementId(SmallVec<[ElementId; 32]>);
pub(crate) struct GlobalElementId(SmallVec<[ElementId; 32]>);
trait ElementObject {
fn element_id(&self) -> Option<ElementId>;
@ -180,7 +242,8 @@ trait ElementObject {
);
}
pub struct DrawableElement<E: Element> {
/// A wrapper around an implementer of [`Element`] that allows it to be drawn in a window.
pub(crate) struct DrawableElement<E: Element> {
element: Option<E>,
phase: ElementDrawPhase<E::State>,
}
@ -363,10 +426,11 @@ where
}
}
/// A dynamically typed element that can be used to store any element type.
pub struct AnyElement(ArenaBox<dyn ElementObject>);
impl AnyElement {
pub fn new<E>(element: E) -> Self
pub(crate) fn new<E>(element: E) -> Self
where
E: 'static + Element,
E::State: Any,
@ -377,10 +441,13 @@ impl AnyElement {
AnyElement(element)
}
/// Request the layout ID of the element stored in this `AnyElement`.
/// Used for laying out child elements in a parent element.
pub fn request_layout(&mut self, cx: &mut WindowContext) -> LayoutId {
self.0.request_layout(cx)
}
/// Paints the element stored in this `AnyElement`.
pub fn paint(&mut self, cx: &mut WindowContext) {
self.0.paint(cx)
}
@ -404,6 +471,7 @@ impl AnyElement {
self.0.draw(origin, available_space, cx)
}
/// Returns the element ID of the element stored in this `AnyElement`, if any.
pub fn inner_id(&self) -> Option<ElementId> {
self.0.element_id()
}

View File

@ -771,8 +771,8 @@ impl InteractiveElement for Div {
}
impl ParentElement for Div {
fn children_mut(&mut self) -> &mut SmallVec<[AnyElement; 2]> {
&mut self.children
fn extend(&mut self, elements: impl IntoIterator<Item = AnyElement>) {
self.children.extend(elements)
}
}
@ -1824,8 +1824,8 @@ impl<E> ParentElement for Focusable<E>
where
E: ParentElement,
{
fn children_mut(&mut self) -> &mut SmallVec<[AnyElement; 2]> {
self.element.children_mut()
fn extend(&mut self, elements: impl Iterator<Item = AnyElement>) {
self.element.extend(elements)
}
}
@ -1898,8 +1898,8 @@ impl<E> ParentElement for Stateful<E>
where
E: ParentElement,
{
fn children_mut(&mut self) -> &mut SmallVec<[AnyElement; 2]> {
self.element.children_mut()
fn extend(&mut self, elements: impl Iterator<Item = AnyElement>) {
self.element.extend(elements)
}
}

View File

@ -60,8 +60,8 @@ impl Overlay {
}
impl ParentElement for Overlay {
fn children_mut(&mut self) -> &mut SmallVec<[AnyElement; 2]> {
&mut self.children
fn extend(&mut self, elements: impl Iterator<Item = AnyElement>) {
self.children.extend(elements)
}
}

View File

@ -1,3 +1,5 @@
#![deny(missing_docs)]
#[macro_use]
mod action;
mod app;

View File

@ -1,5 +1,3 @@
#![deny(missing_docs)]
mod app_menu;
mod keystroke;
#[cfg(target_os = "macos")]

View File

@ -1,5 +1,3 @@
#![deny(missing_docs)]
use crate::{
seal::Sealed, AnyElement, AnyModel, AnyWeakModel, AppContext, AvailableSpace, BorrowWindow,
Bounds, ContentMask, Element, ElementId, Entity, EntityId, Flatten, FocusHandle, FocusableView,

View File

@ -1,5 +1,3 @@
#![deny(missing_docs)]
use crate::{
px, size, transparent_black, Action, AnyDrag, AnyTooltip, AnyView, AppContext, Arena,
AsyncWindowContext, AvailableSpace, Bounds, BoxShadow, Context, Corners, CursorStyle,

View File

@ -67,8 +67,8 @@ impl StoryContainer {
}
impl ParentElement for StoryContainer {
fn children_mut(&mut self) -> &mut SmallVec<[AnyElement; 2]> {
&mut self.children
fn extend(&mut self, elements: impl Iterator<Item = AnyElement>) {
self.children.extend(elements)
}
}
@ -372,7 +372,7 @@ impl RenderOnce for StorySection {
}
impl ParentElement for StorySection {
fn children_mut(&mut self) -> &mut SmallVec<[AnyElement; 2]> {
&mut self.children
fn extend(&mut self, elements: impl Iterator<Item = AnyElement>) {
self.children.extend(elements)
}
}

View File

@ -407,8 +407,8 @@ impl VisibleOnHover for ButtonLike {
}
impl ParentElement for ButtonLike {
fn children_mut(&mut self) -> &mut SmallVec<[AnyElement; 2]> {
&mut self.children
fn extend(&mut self, elements: impl Iterator<Item = AnyElement>) {
self.children.extend(elements)
}
}

View File

@ -78,8 +78,8 @@ impl LabelCommon for LabelLike {
}
impl ParentElement for LabelLike {
fn children_mut(&mut self) -> &mut SmallVec<[AnyElement; 2]> {
&mut self.children
fn extend(&mut self, elements: impl Iterator<Item = AnyElement>) {
self.children.extend(elements)
}
}

View File

@ -40,8 +40,8 @@ impl List {
}
impl ParentElement for List {
fn children_mut(&mut self) -> &mut SmallVec<[AnyElement; 2]> {
&mut self.children
fn extend(&mut self, elements: impl Iterator<Item = AnyElement>) {
self.children.extend(elements)
}
}

View File

@ -141,8 +141,8 @@ impl Selectable for ListItem {
}
impl ParentElement for ListItem {
fn children_mut(&mut self) -> &mut SmallVec<[AnyElement; 2]> {
&mut self.children
fn extend(&mut self, elements: impl Iterator<Item = AnyElement>) {
self.children.extend(elements)
}
}

View File

@ -74,7 +74,7 @@ impl Popover {
}
impl ParentElement for Popover {
fn children_mut(&mut self) -> &mut SmallVec<[AnyElement; 2]> {
&mut self.children
fn extend(&mut self, elements: impl Iterator<Item = AnyElement>) {
self.children.extend(elements)
}
}

View File

@ -92,8 +92,8 @@ impl Selectable for Tab {
}
impl ParentElement for Tab {
fn children_mut(&mut self) -> &mut SmallVec<[AnyElement; 2]> {
&mut self.children
fn extend(&mut self, elements: impl Iterator<Item = AnyElement>) {
self.children.extend(elements)
}
}

View File

@ -83,8 +83,8 @@ impl TabBar {
}
impl ParentElement for TabBar {
fn children_mut(&mut self) -> &mut SmallVec<[AnyElement; 2]> {
&mut self.children
fn extend(&mut self, elements: impl Iterator<Item = AnyElement>) {
self.children.extend(elements)
}
}

View File

@ -904,8 +904,8 @@ mod element {
}
impl ParentElement for PaneAxisElement {
fn children_mut(&mut self) -> &mut smallvec::SmallVec<[AnyElement; 2]> {
&mut self.children
fn extend(&mut self, elements: impl Iterator<Item = AnyElement>) {
self.children.extend(elements)
}
}