assistant: Overhaul provider infrastructure (#14929)

<img width="624" alt="image"
src="https://github.com/user-attachments/assets/f492b0bd-14c3-49e2-b2ff-dc78e52b0815">

- [x] Correctly set custom model token count
- [x] How to count tokens for Gemini models?
- [x] Feature flag zed.dev provider
- [x] Figure out how to configure custom models
- [ ] Update docs

Release Notes:

- Added support for quickly switching between multiple language model
providers in the assistant panel

---------

Co-authored-by: Antonio <antonio@zed.dev>
This commit is contained in:
Bennet Bo Fenner 2024-07-23 19:48:41 +02:00 committed by GitHub
parent 17ef9a367f
commit d0f52e90e6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
55 changed files with 2757 additions and 2023 deletions

30
Cargo.lock generated
View File

@ -2509,6 +2509,7 @@ dependencies = [
"http 0.1.0",
"indoc",
"language",
"language_model",
"live_kit_client",
"live_kit_server",
"log",
@ -2678,36 +2679,22 @@ dependencies = [
name = "completion"
version = "0.1.0"
dependencies = [
"anthropic",
"anyhow",
"client",
"collections",
"ctor",
"editor",
"env_logger",
"futures 0.3.28",
"gpui",
"http 0.1.0",
"language",
"language_model",
"log",
"menu",
"ollama",
"open_ai",
"parking_lot",
"project",
"rand 0.8.5",
"serde",
"serde_json",
"settings",
"smol",
"strum",
"text",
"theme",
"tiktoken-rs",
"ui",
"unindent",
"util",
]
[[package]]
@ -6040,11 +6027,19 @@ name = "language_model"
version = "0.1.0"
dependencies = [
"anthropic",
"anyhow",
"client",
"collections",
"ctor",
"editor",
"env_logger",
"feature_flags",
"futures 0.3.28",
"gpui",
"http 0.1.0",
"language",
"log",
"menu",
"ollama",
"open_ai",
"project",
@ -6052,9 +6047,15 @@ dependencies = [
"rand 0.8.5",
"schemars",
"serde",
"serde_json",
"settings",
"strum",
"text",
"theme",
"tiktoken-rs",
"ui",
"unindent",
"util",
]
[[package]]
@ -13802,6 +13803,7 @@ dependencies = [
"isahc",
"journal",
"language",
"language_model",
"language_selector",
"language_tools",
"languages",

View File

@ -375,7 +375,7 @@
},
"assistant": {
// Version of this setting.
"version": "1",
"version": "2",
// Whether the assistant is enabled.
"enabled": true,
// Whether to show the assistant panel button in the status bar.
@ -386,18 +386,12 @@
"default_width": 640,
// Default height when the assistant is docked to the bottom.
"default_height": 320,
// AI provider.
"provider": {
"name": "openai",
// The default model to use when creating new contexts. This
// setting can take three values:
//
// 1. "gpt-3.5-turbo"
// 2. "gpt-4"
// 3. "gpt-4-turbo-preview"
// 4. "gpt-4o"
// 5. "gpt-4o-mini"
"default_model": "gpt-4o"
// The default model to use when creating new contexts.
"default_model": {
// The provider to use.
"provider": "openai",
// The model to use.
"model": "gpt-4o"
}
},
// Whether the screen sharing icon is shown in the os status bar.
@ -858,6 +852,8 @@
}
}
},
// Different settings for specific language models.
"language_models": {},
// Zed's Prettier integration settings.
// Allows to enable/disable formatting with Prettier
// and configure default Prettier, used when no project-level Prettier installation is found.

View File

@ -21,11 +21,7 @@ pub enum Model {
#[serde(alias = "claude-3-haiku", rename = "claude-3-haiku-20240307")]
Claude3Haiku,
#[serde(rename = "custom")]
Custom {
name: String,
#[serde(default)]
max_tokens: Option<usize>,
},
Custom { name: String, max_tokens: usize },
}
impl Model {
@ -39,10 +35,7 @@ impl Model {
} else if id.starts_with("claude-3-haiku") {
Ok(Self::Claude3Haiku)
} else {
Ok(Self::Custom {
name: id.to_string(),
max_tokens: None,
})
Err(anyhow!("invalid model id"))
}
}
@ -52,7 +45,7 @@ impl Model {
Model::Claude3Opus => "claude-3-opus-20240229",
Model::Claude3Sonnet => "claude-3-sonnet-20240229",
Model::Claude3Haiku => "claude-3-opus-20240307",
Model::Custom { name, .. } => name,
Self::Custom { name, .. } => name,
}
}
@ -72,7 +65,7 @@ impl Model {
| Self::Claude3Opus
| Self::Claude3Sonnet
| Self::Claude3Haiku => 200_000,
Self::Custom { max_tokens, .. } => max_tokens.unwrap_or(200_000),
Self::Custom { max_tokens, .. } => *max_tokens,
}
}
}

View File

@ -15,20 +15,20 @@ use assistant_settings::AssistantSettings;
use assistant_slash_command::SlashCommandRegistry;
use client::{proto, Client};
use command_palette_hooks::CommandPaletteFilter;
use completion::CompletionProvider;
use completion::LanguageModelCompletionProvider;
pub use context::*;
pub use context_store::*;
use fs::Fs;
use gpui::{
actions, impl_actions, AppContext, BorrowAppContext, Global, SharedString, UpdateGlobal,
};
use gpui::{actions, impl_actions, AppContext, Global, SharedString, UpdateGlobal};
use indexed_docs::IndexedDocsRegistry;
pub(crate) use inline_assistant::*;
use language_model::LanguageModelResponseMessage;
use language_model::{
LanguageModelId, LanguageModelProviderName, LanguageModelRegistry, LanguageModelResponseMessage,
};
pub(crate) use model_selector::*;
use semantic_index::{CloudEmbeddingProvider, SemanticIndex};
use serde::{Deserialize, Serialize};
use settings::{Settings, SettingsStore};
use settings::{update_settings_file, Settings, SettingsStore};
use slash_command::{
active_command, default_command, diagnostics_command, docs_command, fetch_command,
file_command, now_command, project_command, prompt_command, search_command, symbols_command,
@ -165,6 +165,16 @@ pub fn init(fs: Arc<dyn Fs>, client: Arc<Client>, cx: &mut AppContext) {
cx.set_global(Assistant::default());
AssistantSettings::register(cx);
// TODO: remove this when 0.148.0 is released.
if AssistantSettings::get_global(cx).using_outdated_settings_version {
update_settings_file::<AssistantSettings>(fs.clone(), cx, {
let fs = fs.clone();
|content, cx| {
content.update_file(fs, cx);
}
});
}
cx.spawn(|mut cx| {
let client = client.clone();
async move {
@ -182,7 +192,7 @@ pub fn init(fs: Arc<dyn Fs>, client: Arc<Client>, cx: &mut AppContext) {
context_store::init(&client);
prompt_library::init(cx);
init_completion_provider(Arc::clone(&client), cx);
init_completion_provider(cx);
assistant_slash_command::init(cx);
register_slash_commands(cx);
assistant_panel::init(cx);
@ -207,20 +217,38 @@ pub fn init(fs: Arc<dyn Fs>, client: Arc<Client>, cx: &mut AppContext) {
.detach();
}
fn init_completion_provider(client: Arc<Client>, cx: &mut AppContext) {
let provider = assistant_settings::create_provider_from_settings(client.clone(), 0, cx);
cx.set_global(CompletionProvider::new(provider, Some(client)));
fn init_completion_provider(cx: &mut AppContext) {
completion::init(cx);
update_active_language_model_from_settings(cx);
let mut settings_version = 0;
cx.observe_global::<SettingsStore>(move |cx| {
settings_version += 1;
cx.update_global::<CompletionProvider, _>(|provider, cx| {
assistant_settings::update_completion_provider_settings(provider, settings_version, cx);
})
cx.observe_global::<SettingsStore>(update_active_language_model_from_settings)
.detach();
cx.observe(&LanguageModelRegistry::global(cx), |_, cx| {
update_active_language_model_from_settings(cx)
})
.detach();
}
fn update_active_language_model_from_settings(cx: &mut AppContext) {
let settings = AssistantSettings::get_global(cx);
let provider_name = LanguageModelProviderName::from(settings.default_model.provider.clone());
let model_id = LanguageModelId::from(settings.default_model.model.clone());
let Some(provider) = LanguageModelRegistry::global(cx)
.read(cx)
.provider(&provider_name)
else {
return;
};
let models = provider.provided_models(cx);
if let Some(model) = models.iter().find(|model| model.id() == model_id).cloned() {
LanguageModelCompletionProvider::global(cx).update(cx, |completion_provider, cx| {
completion_provider.set_active_model(model, cx);
});
}
}
fn register_slash_commands(cx: &mut AppContext) {
let slash_command_registry = SlashCommandRegistry::global(cx);
slash_command_registry.register_command(file_command::FileSlashCommand, true);

View File

@ -18,7 +18,7 @@ use anyhow::{anyhow, Result};
use assistant_slash_command::{SlashCommand, SlashCommandOutputSection};
use client::proto;
use collections::{BTreeSet, HashMap, HashSet};
use completion::CompletionProvider;
use completion::LanguageModelCompletionProvider;
use editor::{
actions::{FoldAt, MoveToEndOfLine, Newline, ShowCompletions, UnfoldAt},
display_map::{
@ -364,13 +364,12 @@ impl AssistantPanel {
cx.subscribe(&pane, Self::handle_pane_event),
cx.subscribe(&context_editor_toolbar, Self::handle_toolbar_event),
cx.subscribe(&model_summary_editor, Self::handle_summary_editor_event),
cx.observe_global::<CompletionProvider>({
let mut prev_settings_version = CompletionProvider::global(cx).settings_version();
move |this, cx| {
this.completion_provider_changed(prev_settings_version, cx);
prev_settings_version = CompletionProvider::global(cx).settings_version();
}
}),
cx.observe(
&LanguageModelCompletionProvider::global(cx),
|this, _, cx| {
this.completion_provider_changed(cx);
},
),
];
Self {
@ -483,37 +482,36 @@ impl AssistantPanel {
}
}
fn completion_provider_changed(
&mut self,
prev_settings_version: usize,
cx: &mut ViewContext<Self>,
) {
if self.is_authenticated(cx) {
self.authentication_prompt = None;
match self.active_context_editor(cx) {
Some(editor) => {
fn completion_provider_changed(&mut self, cx: &mut ViewContext<Self>) {
if let Some(editor) = self.active_context_editor(cx) {
editor.update(cx, |active_context, cx| {
active_context
.context
.update(cx, |context, cx| context.completion_provider_changed(cx))
});
})
}
None => {
if self.active_context_editor(cx).is_none() {
self.new_context(cx);
}
let authentication_prompt = Self::authentication_prompt(cx);
for context_editor in self.context_editors(cx) {
context_editor.update(cx, |editor, cx| {
editor.set_authentication_prompt(authentication_prompt.clone(), cx);
});
}
cx.notify();
} else if self.authentication_prompt.is_none()
|| prev_settings_version != CompletionProvider::global(cx).settings_version()
{
self.authentication_prompt =
Some(cx.update_global::<CompletionProvider, _>(|provider, cx| {
provider.authentication_prompt(cx)
}));
cx.notify();
}
fn authentication_prompt(cx: &mut WindowContext) -> Option<AnyView> {
if let Some(provider) = LanguageModelCompletionProvider::read_global(cx).active_provider() {
if !provider.is_authenticated(cx) {
return Some(provider.authentication_prompt(cx));
}
}
None
}
pub fn inline_assist(
@ -774,7 +772,7 @@ impl AssistantPanel {
}
fn reset_credentials(&mut self, _: &ResetKey, cx: &mut ViewContext<Self>) {
CompletionProvider::global(cx)
LanguageModelCompletionProvider::read_global(cx)
.reset_credentials(cx)
.detach_and_log_err(cx);
}
@ -783,6 +781,13 @@ impl AssistantPanel {
self.model_selector_menu_handle.toggle(cx);
}
fn context_editors(&self, cx: &AppContext) -> Vec<View<ContextEditor>> {
self.pane
.read(cx)
.items_of_type::<ContextEditor>()
.collect()
}
fn active_context_editor(&self, cx: &AppContext) -> Option<View<ContextEditor>> {
self.pane
.read(cx)
@ -904,11 +909,11 @@ impl AssistantPanel {
}
fn is_authenticated(&mut self, cx: &mut ViewContext<Self>) -> bool {
CompletionProvider::global(cx).is_authenticated()
LanguageModelCompletionProvider::read_global(cx).is_authenticated(cx)
}
fn authenticate(&mut self, cx: &mut ViewContext<Self>) -> Task<Result<()>> {
cx.update_global::<CompletionProvider, _>(|provider, cx| provider.authenticate(cx))
LanguageModelCompletionProvider::read_global(cx).authenticate(cx)
}
fn render_signed_in(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
@ -968,14 +973,18 @@ impl Panel for AssistantPanel {
}
fn set_position(&mut self, position: DockPosition, cx: &mut ViewContext<Self>) {
settings::update_settings_file::<AssistantSettings>(self.fs.clone(), cx, move |settings| {
settings::update_settings_file::<AssistantSettings>(
self.fs.clone(),
cx,
move |settings, _| {
let dock = match position {
DockPosition::Left => AssistantDockPosition::Left,
DockPosition::Bottom => AssistantDockPosition::Bottom,
DockPosition::Right => AssistantDockPosition::Right,
};
settings.set_dock(dock);
});
},
);
}
fn size(&self, cx: &WindowContext) -> Pixels {
@ -1074,6 +1083,7 @@ struct ActiveEditStep {
pub struct ContextEditor {
context: Model<Context>,
authentication_prompt: Option<AnyView>,
fs: Arc<dyn Fs>,
workspace: WeakView<Workspace>,
project: Model<Project>,
@ -1131,6 +1141,7 @@ impl ContextEditor {
let sections = context.read(cx).slash_command_output_sections().to_vec();
let mut this = Self {
context,
authentication_prompt: None,
editor,
lsp_adapter_delegate,
blocks: Default::default(),
@ -1150,6 +1161,15 @@ impl ContextEditor {
this
}
fn set_authentication_prompt(
&mut self,
authentication_prompt: Option<AnyView>,
cx: &mut ViewContext<Self>,
) {
self.authentication_prompt = authentication_prompt;
cx.notify();
}
fn insert_default_prompt(&mut self, cx: &mut ViewContext<Self>) {
let command_name = DefaultSlashCommand.name();
self.editor.update(cx, |editor, cx| {
@ -1176,6 +1196,10 @@ impl ContextEditor {
}
fn assist(&mut self, _: &Assist, cx: &mut ViewContext<Self>) {
if self.authentication_prompt.is_some() {
return;
}
if !self.apply_edit_step(cx) {
self.send_to_model(cx);
}
@ -2203,6 +2227,12 @@ impl Render for ContextEditor {
.size_full()
.v_flex()
.child(
if let Some(authentication_prompt) = self.authentication_prompt.as_ref() {
div()
.flex_grow()
.bg(cx.theme().colors().editor_background)
.child(authentication_prompt.clone().into_any())
} else {
div()
.flex_grow()
.bg(cx.theme().colors().editor_background)
@ -2215,7 +2245,8 @@ impl Render for ContextEditor {
.p_4()
.justify_end()
.child(self.render_send_button(cx)),
),
)
},
)
}
}
@ -2543,7 +2574,7 @@ impl ContextEditorToolbarItem {
}
fn render_remaining_tokens(&self, cx: &mut ViewContext<Self>) -> Option<impl IntoElement> {
let model = CompletionProvider::global(cx).model();
let model = LanguageModelCompletionProvider::read_global(cx).active_model()?;
let context = &self
.active_context_editor
.as_ref()?

View File

@ -1,19 +1,14 @@
use std::{sync::Arc, time::Duration};
use std::sync::Arc;
use anthropic::Model as AnthropicModel;
use client::Client;
use completion::{
AnthropicCompletionProvider, CloudCompletionProvider, CompletionProvider,
LanguageModelCompletionProvider, OllamaCompletionProvider, OpenAiCompletionProvider,
};
use fs::Fs;
use gpui::{AppContext, Pixels};
use language_model::{CloudModel, LanguageModel};
use language_model::{settings::AllLanguageModelSettings, CloudModel, LanguageModel};
use ollama::Model as OllamaModel;
use open_ai::Model as OpenAiModel;
use parking_lot::RwLock;
use schemars::{schema::Schema, JsonSchema};
use serde::{Deserialize, Serialize};
use settings::{Settings, SettingsSources};
use settings::{update_settings_file, Settings, SettingsSources};
#[derive(Copy, Clone, Default, Debug, Serialize, Deserialize, JsonSchema)]
#[serde(rename_all = "snake_case")]
@ -24,43 +19,9 @@ pub enum AssistantDockPosition {
Bottom,
}
#[derive(Debug, PartialEq)]
pub enum AssistantProvider {
ZedDotDev {
model: CloudModel,
},
OpenAi {
model: OpenAiModel,
api_url: String,
low_speed_timeout_in_seconds: Option<u64>,
available_models: Vec<OpenAiModel>,
},
Anthropic {
model: AnthropicModel,
api_url: String,
low_speed_timeout_in_seconds: Option<u64>,
},
Ollama {
model: OllamaModel,
api_url: String,
low_speed_timeout_in_seconds: Option<u64>,
},
}
impl Default for AssistantProvider {
fn default() -> Self {
Self::OpenAi {
model: OpenAiModel::default(),
api_url: open_ai::OPEN_AI_API_URL.into(),
low_speed_timeout_in_seconds: None,
available_models: Default::default(),
}
}
}
#[derive(Clone, Debug, Serialize, Deserialize, JsonSchema, PartialEq)]
#[serde(tag = "name", rename_all = "snake_case")]
pub enum AssistantProviderContent {
pub enum AssistantProviderContentV1 {
#[serde(rename = "zed.dev")]
ZedDotDev { default_model: Option<CloudModel> },
#[serde(rename = "openai")]
@ -91,7 +52,8 @@ pub struct AssistantSettings {
pub dock: AssistantDockPosition,
pub default_width: Pixels,
pub default_height: Pixels,
pub provider: AssistantProvider,
pub default_model: AssistantDefaultModel,
pub using_outdated_settings_version: bool,
}
/// Assistant panel settings
@ -123,34 +85,142 @@ impl Default for AssistantSettingsContent {
}
impl AssistantSettingsContent {
fn upgrade(&self) -> AssistantSettingsContentV1 {
pub fn is_version_outdated(&self) -> bool {
match self {
AssistantSettingsContent::Versioned(settings) => match settings {
VersionedAssistantSettingsContent::V1(settings) => settings.clone(),
VersionedAssistantSettingsContent::V1(_) => true,
VersionedAssistantSettingsContent::V2(_) => false,
},
AssistantSettingsContent::Legacy(settings) => AssistantSettingsContentV1 {
AssistantSettingsContent::Legacy(_) => true,
}
}
pub fn update_file(&mut self, fs: Arc<dyn Fs>, cx: &AppContext) {
if let AssistantSettingsContent::Versioned(settings) = self {
if let VersionedAssistantSettingsContent::V1(settings) = settings {
if let Some(provider) = settings.provider.clone() {
match provider {
AssistantProviderContentV1::Anthropic {
api_url,
low_speed_timeout_in_seconds,
..
} => update_settings_file::<AllLanguageModelSettings>(
fs,
cx,
move |content, _| {
if content.anthropic.is_none() {
content.anthropic =
Some(language_model::settings::AnthropicSettingsContent {
api_url,
low_speed_timeout_in_seconds,
..Default::default()
});
}
},
),
AssistantProviderContentV1::Ollama {
api_url,
low_speed_timeout_in_seconds,
..
} => update_settings_file::<AllLanguageModelSettings>(
fs,
cx,
move |content, _| {
if content.ollama.is_none() {
content.ollama =
Some(language_model::settings::OllamaSettingsContent {
api_url,
low_speed_timeout_in_seconds,
});
}
},
),
AssistantProviderContentV1::OpenAi {
api_url,
low_speed_timeout_in_seconds,
available_models,
..
} => update_settings_file::<AllLanguageModelSettings>(
fs,
cx,
move |content, _| {
if content.open_ai.is_none() {
content.open_ai =
Some(language_model::settings::OpenAiSettingsContent {
api_url,
low_speed_timeout_in_seconds,
available_models,
});
}
},
),
_ => {}
}
}
}
}
*self = AssistantSettingsContent::Versioned(VersionedAssistantSettingsContent::V2(
self.upgrade(),
));
}
fn upgrade(&self) -> AssistantSettingsContentV2 {
match self {
AssistantSettingsContent::Versioned(settings) => match settings {
VersionedAssistantSettingsContent::V1(settings) => AssistantSettingsContentV2 {
enabled: settings.enabled,
button: settings.button,
dock: settings.dock,
default_width: settings.default_width,
default_height: settings.default_width,
default_model: settings
.provider
.clone()
.and_then(|provider| match provider {
AssistantProviderContentV1::ZedDotDev { default_model } => {
default_model.map(|model| AssistantDefaultModel {
provider: "zed.dev".to_string(),
model: model.id().to_string(),
})
}
AssistantProviderContentV1::OpenAi { default_model, .. } => {
default_model.map(|model| AssistantDefaultModel {
provider: "openai".to_string(),
model: model.id().to_string(),
})
}
AssistantProviderContentV1::Anthropic { default_model, .. } => {
default_model.map(|model| AssistantDefaultModel {
provider: "anthropic".to_string(),
model: model.id().to_string(),
})
}
AssistantProviderContentV1::Ollama { default_model, .. } => {
default_model.map(|model| AssistantDefaultModel {
provider: "ollama".to_string(),
model: model.id().to_string(),
})
}
}),
},
VersionedAssistantSettingsContent::V2(settings) => settings.clone(),
},
AssistantSettingsContent::Legacy(settings) => AssistantSettingsContentV2 {
enabled: None,
button: settings.button,
dock: settings.dock,
default_width: settings.default_width,
default_height: settings.default_height,
provider: if let Some(open_ai_api_url) = settings.openai_api_url.as_ref() {
Some(AssistantProviderContent::OpenAi {
default_model: settings.default_open_ai_model.clone(),
api_url: Some(open_ai_api_url.clone()),
low_speed_timeout_in_seconds: None,
available_models: Some(Default::default()),
})
} else {
settings.default_open_ai_model.clone().map(|open_ai_model| {
AssistantProviderContent::OpenAi {
default_model: Some(open_ai_model),
api_url: None,
low_speed_timeout_in_seconds: None,
available_models: Some(Default::default()),
}
})
},
default_model: Some(AssistantDefaultModel {
provider: "openai".to_string(),
model: settings
.default_open_ai_model
.clone()
.unwrap_or_default()
.id()
.to_string(),
}),
},
}
}
@ -161,6 +231,9 @@ impl AssistantSettingsContent {
VersionedAssistantSettingsContent::V1(settings) => {
settings.dock = Some(dock);
}
VersionedAssistantSettingsContent::V2(settings) => {
settings.dock = Some(dock);
}
},
AssistantSettingsContent::Legacy(settings) => {
settings.dock = Some(dock);
@ -168,74 +241,78 @@ impl AssistantSettingsContent {
}
}
pub fn set_model(&mut self, new_model: LanguageModel) {
pub fn set_model(&mut self, language_model: Arc<dyn LanguageModel>) {
let model = language_model.id().0.to_string();
let provider = language_model.provider_name().0.to_string();
match self {
AssistantSettingsContent::Versioned(settings) => match settings {
VersionedAssistantSettingsContent::V1(settings) => match &mut settings.provider {
Some(AssistantProviderContent::ZedDotDev {
default_model: model,
}) => {
if let LanguageModel::Cloud(new_model) = new_model {
*model = Some(new_model);
VersionedAssistantSettingsContent::V1(settings) => match provider.as_ref() {
"zed.dev" => {
settings.provider = Some(AssistantProviderContentV1::ZedDotDev {
default_model: CloudModel::from_id(&model).ok(),
});
}
}
Some(AssistantProviderContent::OpenAi {
default_model: model,
"anthropic" => {
let (api_url, low_speed_timeout_in_seconds) = match &settings.provider {
Some(AssistantProviderContentV1::Anthropic {
api_url,
low_speed_timeout_in_seconds,
..
}) => {
if let LanguageModel::OpenAi(new_model) = new_model {
*model = Some(new_model);
}) => (api_url.clone(), *low_speed_timeout_in_seconds),
_ => (None, None),
};
settings.provider = Some(AssistantProviderContentV1::Anthropic {
default_model: AnthropicModel::from_id(&model).ok(),
api_url,
low_speed_timeout_in_seconds,
});
}
}
Some(AssistantProviderContent::Anthropic {
default_model: model,
"ollama" => {
let (api_url, low_speed_timeout_in_seconds) = match &settings.provider {
Some(AssistantProviderContentV1::Ollama {
api_url,
low_speed_timeout_in_seconds,
..
}) => {
if let LanguageModel::Anthropic(new_model) = new_model {
*model = Some(new_model);
}) => (api_url.clone(), *low_speed_timeout_in_seconds),
_ => (None, None),
};
settings.provider = Some(AssistantProviderContentV1::Ollama {
default_model: Some(ollama::Model::new(&model)),
api_url,
low_speed_timeout_in_seconds,
});
}
}
Some(AssistantProviderContent::Ollama {
default_model: model,
"openai" => {
let (api_url, low_speed_timeout_in_seconds, available_models) =
match &settings.provider {
Some(AssistantProviderContentV1::OpenAi {
api_url,
low_speed_timeout_in_seconds,
available_models,
..
}) => {
if let LanguageModel::Ollama(new_model) = new_model {
*model = Some(new_model);
}
}
provider => match new_model {
LanguageModel::Cloud(model) => {
*provider = Some(AssistantProviderContent::ZedDotDev {
default_model: Some(model),
})
}
LanguageModel::OpenAi(model) => {
*provider = Some(AssistantProviderContent::OpenAi {
default_model: Some(model),
api_url: None,
low_speed_timeout_in_seconds: None,
available_models: Some(Default::default()),
})
}
LanguageModel::Anthropic(model) => {
*provider = Some(AssistantProviderContent::Anthropic {
default_model: Some(model),
api_url: None,
low_speed_timeout_in_seconds: None,
})
}
LanguageModel::Ollama(model) => {
*provider = Some(AssistantProviderContent::Ollama {
default_model: Some(model),
api_url: None,
low_speed_timeout_in_seconds: None,
})
}) => (
api_url.clone(),
*low_speed_timeout_in_seconds,
available_models.clone(),
),
_ => (None, None, None),
};
settings.provider = Some(AssistantProviderContentV1::OpenAi {
default_model: open_ai::Model::from_id(&model).ok(),
api_url,
low_speed_timeout_in_seconds,
available_models,
});
}
_ => {}
},
},
VersionedAssistantSettingsContent::V2(settings) => {
settings.default_model = Some(AssistantDefaultModel { provider, model });
}
},
AssistantSettingsContent::Legacy(settings) => {
if let LanguageModel::OpenAi(model) = new_model {
if let Ok(model) = open_ai::Model::from_id(&language_model.id().0) {
settings.default_open_ai_model = Some(model);
}
}
@ -248,21 +325,78 @@ impl AssistantSettingsContent {
pub enum VersionedAssistantSettingsContent {
#[serde(rename = "1")]
V1(AssistantSettingsContentV1),
#[serde(rename = "2")]
V2(AssistantSettingsContentV2),
}
impl Default for VersionedAssistantSettingsContent {
fn default() -> Self {
Self::V1(AssistantSettingsContentV1 {
Self::V2(AssistantSettingsContentV2 {
enabled: None,
button: None,
dock: None,
default_width: None,
default_height: None,
provider: None,
default_model: None,
})
}
}
#[derive(Clone, Serialize, Deserialize, JsonSchema, Debug)]
pub struct AssistantSettingsContentV2 {
/// Whether the Assistant is enabled.
///
/// Default: true
enabled: Option<bool>,
/// Whether to show the assistant panel button in the status bar.
///
/// Default: true
button: Option<bool>,
/// Where to dock the assistant.
///
/// Default: right
dock: Option<AssistantDockPosition>,
/// Default width in pixels when the assistant is docked to the left or right.
///
/// Default: 640
default_width: Option<f32>,
/// Default height in pixels when the assistant is docked to the bottom.
///
/// Default: 320
default_height: Option<f32>,
/// The default model to use when creating new contexts.
default_model: Option<AssistantDefaultModel>,
}
#[derive(Clone, Debug, Serialize, Deserialize, JsonSchema, PartialEq)]
pub struct AssistantDefaultModel {
#[schemars(schema_with = "providers_schema")]
pub provider: String,
pub model: String,
}
fn providers_schema(_: &mut schemars::gen::SchemaGenerator) -> schemars::schema::Schema {
schemars::schema::SchemaObject {
enum_values: Some(vec![
"anthropic".into(),
"ollama".into(),
"openai".into(),
"zed.dev".into(),
]),
..Default::default()
}
.into()
}
impl Default for AssistantDefaultModel {
fn default() -> Self {
Self {
provider: "openai".to_string(),
model: "gpt-4".to_string(),
}
}
}
#[derive(Clone, Serialize, Deserialize, JsonSchema, Debug)]
pub struct AssistantSettingsContentV1 {
/// Whether the Assistant is enabled.
@ -289,7 +423,7 @@ pub struct AssistantSettingsContentV1 {
///
/// This can either be the internal `zed.dev` service or an external `openai` service,
/// each with their respective default models and configurations.
provider: Option<AssistantProviderContent>,
provider: Option<AssistantProviderContentV1>,
}
#[derive(Clone, Serialize, Deserialize, JsonSchema, Debug)]
@ -332,6 +466,10 @@ impl Settings for AssistantSettings {
let mut settings = AssistantSettings::default();
for value in sources.defaults_and_customizations() {
if value.is_version_outdated() {
settings.using_outdated_settings_version = true;
}
let value = value.upgrade();
merge(&mut settings.enabled, value.enabled);
merge(&mut settings.button, value.button);
@ -344,123 +482,10 @@ impl Settings for AssistantSettings {
&mut settings.default_height,
value.default_height.map(Into::into),
);
if let Some(provider) = value.provider.clone() {
match (&mut settings.provider, provider) {
(
AssistantProvider::ZedDotDev { model },
AssistantProviderContent::ZedDotDev {
default_model: model_override,
},
) => {
merge(model, model_override);
}
(
AssistantProvider::OpenAi {
model,
api_url,
low_speed_timeout_in_seconds,
available_models,
},
AssistantProviderContent::OpenAi {
default_model: model_override,
api_url: api_url_override,
low_speed_timeout_in_seconds: low_speed_timeout_in_seconds_override,
available_models: available_models_override,
},
) => {
merge(model, model_override);
merge(api_url, api_url_override);
merge(available_models, available_models_override);
if let Some(low_speed_timeout_in_seconds_override) =
low_speed_timeout_in_seconds_override
{
*low_speed_timeout_in_seconds =
Some(low_speed_timeout_in_seconds_override);
}
}
(
AssistantProvider::Ollama {
model,
api_url,
low_speed_timeout_in_seconds,
},
AssistantProviderContent::Ollama {
default_model: model_override,
api_url: api_url_override,
low_speed_timeout_in_seconds: low_speed_timeout_in_seconds_override,
},
) => {
merge(model, model_override);
merge(api_url, api_url_override);
if let Some(low_speed_timeout_in_seconds_override) =
low_speed_timeout_in_seconds_override
{
*low_speed_timeout_in_seconds =
Some(low_speed_timeout_in_seconds_override);
}
}
(
AssistantProvider::Anthropic {
model,
api_url,
low_speed_timeout_in_seconds,
},
AssistantProviderContent::Anthropic {
default_model: model_override,
api_url: api_url_override,
low_speed_timeout_in_seconds: low_speed_timeout_in_seconds_override,
},
) => {
merge(model, model_override);
merge(api_url, api_url_override);
if let Some(low_speed_timeout_in_seconds_override) =
low_speed_timeout_in_seconds_override
{
*low_speed_timeout_in_seconds =
Some(low_speed_timeout_in_seconds_override);
}
}
(provider, provider_override) => {
*provider = match provider_override {
AssistantProviderContent::ZedDotDev {
default_model: model,
} => AssistantProvider::ZedDotDev {
model: model.unwrap_or_default(),
},
AssistantProviderContent::OpenAi {
default_model: model,
api_url,
low_speed_timeout_in_seconds,
available_models,
} => AssistantProvider::OpenAi {
model: model.unwrap_or_default(),
api_url: api_url.unwrap_or_else(|| open_ai::OPEN_AI_API_URL.into()),
low_speed_timeout_in_seconds,
available_models: available_models.unwrap_or_default(),
},
AssistantProviderContent::Anthropic {
default_model: model,
api_url,
low_speed_timeout_in_seconds,
} => AssistantProvider::Anthropic {
model: model.unwrap_or_default(),
api_url: api_url
.unwrap_or_else(|| anthropic::ANTHROPIC_API_URL.into()),
low_speed_timeout_in_seconds,
},
AssistantProviderContent::Ollama {
default_model: model,
api_url,
low_speed_timeout_in_seconds,
} => AssistantProvider::Ollama {
model: model.unwrap_or_default(),
api_url: api_url.unwrap_or_else(|| ollama::OLLAMA_API_URL.into()),
low_speed_timeout_in_seconds,
},
};
}
}
}
merge(
&mut settings.default_model,
value.default_model.map(Into::into),
);
}
Ok(settings)
@ -473,221 +498,103 @@ fn merge<T>(target: &mut T, value: Option<T>) {
}
}
pub fn update_completion_provider_settings(
provider: &mut CompletionProvider,
version: usize,
cx: &mut AppContext,
) {
let updated = match &AssistantSettings::get_global(cx).provider {
AssistantProvider::ZedDotDev { model } => provider
.update_current_as::<_, CloudCompletionProvider>(|provider| {
provider.update(model.clone(), version);
}),
AssistantProvider::OpenAi {
model,
api_url,
low_speed_timeout_in_seconds,
available_models,
} => provider.update_current_as::<_, OpenAiCompletionProvider>(|provider| {
provider.update(
choose_openai_model(&model, &available_models),
api_url.clone(),
low_speed_timeout_in_seconds.map(Duration::from_secs),
version,
);
}),
AssistantProvider::Anthropic {
model,
api_url,
low_speed_timeout_in_seconds,
} => provider.update_current_as::<_, AnthropicCompletionProvider>(|provider| {
provider.update(
model.clone(),
api_url.clone(),
low_speed_timeout_in_seconds.map(Duration::from_secs),
version,
);
}),
AssistantProvider::Ollama {
model,
api_url,
low_speed_timeout_in_seconds,
} => provider.update_current_as::<_, OllamaCompletionProvider>(|provider| {
provider.update(
model.clone(),
api_url.clone(),
low_speed_timeout_in_seconds.map(Duration::from_secs),
version,
cx,
);
}),
};
// #[cfg(test)]
// mod tests {
// use gpui::{AppContext, UpdateGlobal};
// use settings::SettingsStore;
// Previously configured provider was changed to another one
if updated.is_none() {
provider.update_provider(|client| create_provider_from_settings(client, version, cx));
}
}
// use super::*;
pub(crate) fn create_provider_from_settings(
client: Arc<Client>,
settings_version: usize,
cx: &mut AppContext,
) -> Arc<RwLock<dyn LanguageModelCompletionProvider>> {
match &AssistantSettings::get_global(cx).provider {
AssistantProvider::ZedDotDev { model } => Arc::new(RwLock::new(
CloudCompletionProvider::new(model.clone(), client.clone(), settings_version, cx),
)),
AssistantProvider::OpenAi {
model,
api_url,
low_speed_timeout_in_seconds,
available_models,
} => Arc::new(RwLock::new(OpenAiCompletionProvider::new(
choose_openai_model(&model, &available_models),
api_url.clone(),
client.http_client(),
low_speed_timeout_in_seconds.map(Duration::from_secs),
settings_version,
available_models.clone(),
))),
AssistantProvider::Anthropic {
model,
api_url,
low_speed_timeout_in_seconds,
} => Arc::new(RwLock::new(AnthropicCompletionProvider::new(
model.clone(),
api_url.clone(),
client.http_client(),
low_speed_timeout_in_seconds.map(Duration::from_secs),
settings_version,
))),
AssistantProvider::Ollama {
model,
api_url,
low_speed_timeout_in_seconds,
} => Arc::new(RwLock::new(OllamaCompletionProvider::new(
model.clone(),
api_url.clone(),
client.http_client(),
low_speed_timeout_in_seconds.map(Duration::from_secs),
settings_version,
cx,
))),
}
}
// #[gpui::test]
// fn test_deserialize_assistant_settings(cx: &mut AppContext) {
// let store = settings::SettingsStore::test(cx);
// cx.set_global(store);
/// Choose which model to use for openai provider.
/// If the model is not available, try to use the first available model, or fallback to the original model.
fn choose_openai_model(
model: &::open_ai::Model,
available_models: &[::open_ai::Model],
) -> ::open_ai::Model {
available_models
.iter()
.find(|&m| m == model)
.or_else(|| available_models.first())
.unwrap_or_else(|| model)
.clone()
}
// // Settings default to gpt-4-turbo.
// AssistantSettings::register(cx);
// assert_eq!(
// AssistantSettings::get_global(cx).provider,
// AssistantProvider::OpenAi {
// model: OpenAiModel::FourOmni,
// api_url: open_ai::OPEN_AI_API_URL.into(),
// low_speed_timeout_in_seconds: None,
// available_models: Default::default(),
// }
// );
#[cfg(test)]
mod tests {
use gpui::{AppContext, UpdateGlobal};
use settings::SettingsStore;
// // Ensure backward-compatibility.
// SettingsStore::update_global(cx, |store, cx| {
// store
// .set_user_settings(
// r#"{
// "assistant": {
// "openai_api_url": "test-url",
// }
// }"#,
// cx,
// )
// .unwrap();
// });
// assert_eq!(
// AssistantSettings::get_global(cx).provider,
// AssistantProvider::OpenAi {
// model: OpenAiModel::FourOmni,
// api_url: "test-url".into(),
// low_speed_timeout_in_seconds: None,
// available_models: Default::default(),
// }
// );
// SettingsStore::update_global(cx, |store, cx| {
// store
// .set_user_settings(
// r#"{
// "assistant": {
// "default_open_ai_model": "gpt-4-0613"
// }
// }"#,
// cx,
// )
// .unwrap();
// });
// assert_eq!(
// AssistantSettings::get_global(cx).provider,
// AssistantProvider::OpenAi {
// model: OpenAiModel::Four,
// api_url: open_ai::OPEN_AI_API_URL.into(),
// low_speed_timeout_in_seconds: None,
// available_models: Default::default(),
// }
// );
use super::*;
#[gpui::test]
fn test_deserialize_assistant_settings(cx: &mut AppContext) {
let store = settings::SettingsStore::test(cx);
cx.set_global(store);
// Settings default to gpt-4-turbo.
AssistantSettings::register(cx);
assert_eq!(
AssistantSettings::get_global(cx).provider,
AssistantProvider::OpenAi {
model: OpenAiModel::FourOmni,
api_url: open_ai::OPEN_AI_API_URL.into(),
low_speed_timeout_in_seconds: None,
available_models: Default::default(),
}
);
// Ensure backward-compatibility.
SettingsStore::update_global(cx, |store, cx| {
store
.set_user_settings(
r#"{
"assistant": {
"openai_api_url": "test-url",
}
}"#,
cx,
)
.unwrap();
});
assert_eq!(
AssistantSettings::get_global(cx).provider,
AssistantProvider::OpenAi {
model: OpenAiModel::FourOmni,
api_url: "test-url".into(),
low_speed_timeout_in_seconds: None,
available_models: Default::default(),
}
);
SettingsStore::update_global(cx, |store, cx| {
store
.set_user_settings(
r#"{
"assistant": {
"default_open_ai_model": "gpt-4-0613"
}
}"#,
cx,
)
.unwrap();
});
assert_eq!(
AssistantSettings::get_global(cx).provider,
AssistantProvider::OpenAi {
model: OpenAiModel::Four,
api_url: open_ai::OPEN_AI_API_URL.into(),
low_speed_timeout_in_seconds: None,
available_models: Default::default(),
}
);
// The new version supports setting a custom model when using zed.dev.
SettingsStore::update_global(cx, |store, cx| {
store
.set_user_settings(
r#"{
"assistant": {
"version": "1",
"provider": {
"name": "zed.dev",
"default_model": {
"custom": {
"name": "custom-provider"
}
}
}
}
}"#,
cx,
)
.unwrap();
});
assert_eq!(
AssistantSettings::get_global(cx).provider,
AssistantProvider::ZedDotDev {
model: CloudModel::Custom {
name: "custom-provider".into(),
max_tokens: None
}
}
);
}
}
// // The new version supports setting a custom model when using zed.dev.
// SettingsStore::update_global(cx, |store, cx| {
// store
// .set_user_settings(
// r#"{
// "assistant": {
// "version": "1",
// "provider": {
// "name": "zed.dev",
// "default_model": {
// "custom": {
// "name": "custom-provider"
// }
// }
// }
// }
// }"#,
// cx,
// )
// .unwrap();
// });
// assert_eq!(
// AssistantSettings::get_global(cx).provider,
// AssistantProvider::ZedDotDev {
// model: CloudModel::Custom {
// name: "custom-provider".into(),
// max_tokens: None
// }
// }
// );
// }
// }

View File

@ -1,6 +1,6 @@
use crate::{
prompt_library::PromptStore, slash_command::SlashCommandLine, CompletionProvider, MessageId,
MessageStatus,
prompt_library::PromptStore, slash_command::SlashCommandLine, LanguageModelCompletionProvider,
MessageId, MessageStatus,
};
use anyhow::{anyhow, Context as _, Result};
use assistant_slash_command::{
@ -1124,7 +1124,9 @@ impl Context {
.await;
let token_count = cx
.update(|cx| CompletionProvider::global(cx).count_tokens(request, cx))?
.update(|cx| {
LanguageModelCompletionProvider::read_global(cx).count_tokens(request, cx)
})?
.await?;
this.update(&mut cx, |this, cx| {
@ -1308,7 +1310,9 @@ impl Context {
});
let raw_output = cx
.update(|cx| CompletionProvider::global(cx).complete(request, cx))?
.update(|cx| {
LanguageModelCompletionProvider::read_global(cx).complete(request, cx)
})?
.await?;
let operations = Self::parse_edit_operations(&raw_output);
@ -1612,13 +1616,14 @@ impl Context {
.then_some(message.id)
})?;
if !CompletionProvider::global(cx).is_authenticated() {
if !LanguageModelCompletionProvider::read_global(cx).is_authenticated(cx) {
log::info!("completion provider has no credentials");
return None;
}
let request = self.to_completion_request(cx);
let stream = CompletionProvider::global(cx).stream_completion(request, cx);
let stream =
LanguageModelCompletionProvider::read_global(cx).stream_completion(request, cx);
let assistant_message = self
.insert_message_after(last_message_id, Role::Assistant, MessageStatus::Pending, cx)
.unwrap();
@ -1698,11 +1703,14 @@ impl Context {
});
if let Some(telemetry) = this.telemetry.as_ref() {
let model = CompletionProvider::global(cx).model();
let model_telemetry_id = LanguageModelCompletionProvider::read_global(cx)
.active_model()
.map(|m| m.telemetry_id())
.unwrap_or_default();
telemetry.report_assistant_event(
Some(this.id.0.clone()),
AssistantKind::Panel,
model.telemetry_id(),
model_telemetry_id,
response_latency,
error_message,
);
@ -1727,7 +1735,6 @@ impl Context {
.map(|message| message.to_request_message(self.buffer.read(cx)));
LanguageModelRequest {
model: CompletionProvider::global(cx).model(),
messages: messages.collect(),
stop: vec![],
temperature: 1.0,
@ -1970,7 +1977,7 @@ impl Context {
pub(super) fn summarize(&mut self, replace_old: bool, cx: &mut ModelContext<Self>) {
if replace_old || (self.message_anchors.len() >= 2 && self.summary.is_none()) {
if !CompletionProvider::global(cx).is_authenticated() {
if !LanguageModelCompletionProvider::read_global(cx).is_authenticated(cx) {
return;
}
@ -1982,13 +1989,13 @@ impl Context {
content: "Summarize the context into a short title without punctuation.".into(),
}));
let request = LanguageModelRequest {
model: CompletionProvider::global(cx).model(),
messages: messages.collect(),
stop: vec![],
temperature: 1.0,
};
let stream = CompletionProvider::global(cx).stream_completion(request, cx);
let stream =
LanguageModelCompletionProvider::read_global(cx).stream_completion(request, cx);
self.pending_summary = cx.spawn(|this, mut cx| {
async move {
let mut messages = stream.await?;
@ -2504,7 +2511,6 @@ mod tests {
MessageId,
};
use assistant_slash_command::{ArgumentCompletion, SlashCommand};
use completion::FakeCompletionProvider;
use fs::FakeFs;
use gpui::{AppContext, TestAppContext, WeakView};
use indoc::indoc;
@ -2524,7 +2530,8 @@ mod tests {
#[gpui::test]
fn test_inserting_and_removing_messages(cx: &mut AppContext) {
let settings_store = SettingsStore::test(cx);
FakeCompletionProvider::setup_test(cx);
language_model::LanguageModelRegistry::test(cx);
completion::LanguageModelCompletionProvider::test(cx);
cx.set_global(settings_store);
assistant_panel::init(cx);
let registry = Arc::new(LanguageRegistry::test(cx.background_executor().clone()));
@ -2656,7 +2663,8 @@ mod tests {
fn test_message_splitting(cx: &mut AppContext) {
let settings_store = SettingsStore::test(cx);
cx.set_global(settings_store);
FakeCompletionProvider::setup_test(cx);
language_model::LanguageModelRegistry::test(cx);
completion::LanguageModelCompletionProvider::test(cx);
assistant_panel::init(cx);
let registry = Arc::new(LanguageRegistry::test(cx.background_executor().clone()));
@ -2749,7 +2757,8 @@ mod tests {
#[gpui::test]
fn test_messages_for_offsets(cx: &mut AppContext) {
let settings_store = SettingsStore::test(cx);
FakeCompletionProvider::setup_test(cx);
language_model::LanguageModelRegistry::test(cx);
completion::LanguageModelCompletionProvider::test(cx);
cx.set_global(settings_store);
assistant_panel::init(cx);
let registry = Arc::new(LanguageRegistry::test(cx.background_executor().clone()));
@ -2834,7 +2843,8 @@ mod tests {
async fn test_slash_commands(cx: &mut TestAppContext) {
let settings_store = cx.update(SettingsStore::test);
cx.set_global(settings_store);
cx.update(FakeCompletionProvider::setup_test);
cx.update(language_model::LanguageModelRegistry::test);
cx.update(completion::LanguageModelCompletionProvider::test);
cx.update(Project::init_settings);
cx.update(assistant_panel::init);
let fs = FakeFs::new(cx.background_executor.clone());
@ -2959,7 +2969,11 @@ mod tests {
cx.update(prompt_library::init);
let settings_store = cx.update(SettingsStore::test);
cx.set_global(settings_store);
let fake_provider = cx.update(FakeCompletionProvider::setup_test);
let fake_provider = cx.update(language_model::LanguageModelRegistry::test);
cx.update(completion::LanguageModelCompletionProvider::test);
let fake_model = fake_provider.test_model();
cx.update(assistant_panel::init);
let registry = Arc::new(LanguageRegistry::test(cx.executor()));
@ -3025,8 +3039,8 @@ mod tests {
});
// Simulate the LLM completion
fake_provider.send_last_completion_chunk(llm_response.to_string());
fake_provider.finish_last_completion();
fake_model.send_last_completion_chunk(llm_response.to_string());
fake_model.finish_last_completion();
// Wait for the completion to be processed
cx.run_until_parked();
@ -3107,7 +3121,8 @@ mod tests {
async fn test_serialization(cx: &mut TestAppContext) {
let settings_store = cx.update(SettingsStore::test);
cx.set_global(settings_store);
cx.update(FakeCompletionProvider::setup_test);
cx.update(language_model::LanguageModelRegistry::test);
cx.update(completion::LanguageModelCompletionProvider::test);
cx.update(assistant_panel::init);
let registry = Arc::new(LanguageRegistry::test(cx.executor()));
let context = cx.new_model(|cx| Context::local(registry.clone(), None, cx));
@ -3183,7 +3198,9 @@ mod tests {
let settings_store = cx.update(SettingsStore::test);
cx.set_global(settings_store);
cx.update(FakeCompletionProvider::setup_test);
cx.update(language_model::LanguageModelRegistry::test);
cx.update(completion::LanguageModelCompletionProvider::test);
cx.update(assistant_panel::init);
let slash_commands = cx.update(SlashCommandRegistry::default_global);
slash_commands.register_command(FakeSlashCommand("cmd-1".into()), false);

View File

@ -1,6 +1,6 @@
use crate::{
assistant_settings::AssistantSettings, humanize_token_count, prompts::generate_content_prompt,
AssistantPanel, AssistantPanelEvent, CompletionProvider, Hunk, StreamingDiff,
AssistantPanel, AssistantPanelEvent, Hunk, LanguageModelCompletionProvider, StreamingDiff,
};
use anyhow::{anyhow, Context as _, Result};
use client::telemetry::Telemetry;
@ -27,7 +27,9 @@ use gpui::{
WindowContext,
};
use language::{Buffer, Point, Selection, TransactionId};
use language_model::{LanguageModelRequest, LanguageModelRequestMessage, Role};
use language_model::{
LanguageModelRegistry, LanguageModelRequest, LanguageModelRequestMessage, Role,
};
use multi_buffer::MultiBufferRow;
use parking_lot::Mutex;
use rope::Rope;
@ -844,7 +846,10 @@ impl InlineAssistant {
}
let codegen = assist.codegen.clone();
let telemetry_id = CompletionProvider::global(cx).model().telemetry_id();
let telemetry_id = LanguageModelCompletionProvider::read_global(cx)
.active_model()
.map(|m| m.telemetry_id())
.unwrap_or_default();
let chunks: LocalBoxFuture<Result<BoxStream<Result<String>>>> =
if user_prompt.trim().to_lowercase() == "delete" {
async { Ok(stream::empty().boxed()) }.boxed_local()
@ -854,7 +859,10 @@ impl InlineAssistant {
async move {
let request = request.await?;
let chunks = cx
.update(|cx| CompletionProvider::global(cx).stream_completion(request, cx))?
.update(|cx| {
LanguageModelCompletionProvider::read_global(cx)
.stream_completion(request, cx)
})?
.await?;
Ok(chunks.boxed())
}
@ -871,8 +879,8 @@ impl InlineAssistant {
cx: &mut WindowContext,
) -> Task<Result<LanguageModelRequest>> {
cx.spawn(|mut cx| async move {
let (user_prompt, context_request, project_name, buffer, range, model) = cx
.read_global(|this: &InlineAssistant, cx: &WindowContext| {
let (user_prompt, context_request, project_name, buffer, range) =
cx.read_global(|this: &InlineAssistant, cx: &WindowContext| {
let assist = this.assists.get(&assist_id).context("invalid assist")?;
let decorations = assist.decorations.as_ref().context("invalid assist")?;
let editor = assist.editor.upgrade().context("invalid assist")?;
@ -906,15 +914,7 @@ impl InlineAssistant {
});
let buffer = editor.read(cx).buffer().read(cx).snapshot(cx);
let range = assist.codegen.read(cx).range.clone();
let model = CompletionProvider::global(cx).model();
anyhow::Ok((
user_prompt,
context_request,
project_name,
buffer,
range,
model,
))
anyhow::Ok((user_prompt, context_request, project_name, buffer, range))
})??;
let language = buffer.language_at(range.start);
@ -973,7 +973,6 @@ impl InlineAssistant {
});
Ok(LanguageModelRequest {
model,
messages,
stop: vec!["|END|>".to_string()],
temperature,
@ -1432,24 +1431,39 @@ impl Render for PromptEditor {
PopoverMenu::new("model-switcher")
.menu(move |cx| {
ContextMenu::build(cx, |mut menu, cx| {
for model in CompletionProvider::global(cx).available_models() {
for available_model in
LanguageModelRegistry::read_global(cx).available_models(cx)
{
menu = menu.custom_entry(
{
let model = model.clone();
let model_name = available_model.name().0.clone();
let provider =
available_model.provider_name().0.clone();
move |_| {
Label::new(model.display_name())
.into_any_element()
h_flex()
.w_full()
.justify_between()
.child(Label::new(model_name.clone()))
.child(
div().ml_4().child(
Label::new(provider.clone())
.color(Color::Muted),
),
)
.into_any()
}
},
{
let fs = fs.clone();
let model = model.clone();
let model = available_model.clone();
move |cx| {
let model = model.clone();
update_settings_file::<AssistantSettings>(
fs.clone(),
cx,
move |settings| settings.set_model(model),
move |settings, _| {
settings.set_model(model)
},
);
}
},
@ -1468,9 +1482,10 @@ impl Render for PromptEditor {
Tooltip::with_meta(
format!(
"Using {}",
CompletionProvider::global(cx)
.model()
.display_name()
LanguageModelCompletionProvider::read_global(cx)
.active_model()
.map(|model| model.name().0)
.unwrap_or_else(|| "No model selected".into()),
),
None,
"Change Model",
@ -1668,7 +1683,9 @@ impl PromptEditor {
.await?;
let token_count = cx
.update(|cx| CompletionProvider::global(cx).count_tokens(request, cx))?
.update(|cx| {
LanguageModelCompletionProvider::read_global(cx).count_tokens(request, cx)
})?
.await?;
this.update(&mut cx, |this, cx| {
this.token_count = Some(token_count);
@ -1796,7 +1813,7 @@ impl PromptEditor {
}
fn render_token_count(&self, cx: &mut ViewContext<Self>) -> Option<impl IntoElement> {
let model = CompletionProvider::global(cx).model();
let model = LanguageModelCompletionProvider::read_global(cx).active_model()?;
let token_count = self.token_count?;
let max_token_count = model.max_token_count();
@ -2601,7 +2618,6 @@ fn merge_ranges(ranges: &mut Vec<Range<Anchor>>, buffer: &MultiBufferSnapshot) {
#[cfg(test)]
mod tests {
use super::*;
use completion::FakeCompletionProvider;
use futures::stream::{self};
use gpui::{Context, TestAppContext};
use indoc::indoc;
@ -2622,7 +2638,8 @@ mod tests {
#[gpui::test(iterations = 10)]
async fn test_transform_autoindent(cx: &mut TestAppContext, mut rng: StdRng) {
cx.set_global(cx.update(SettingsStore::test));
cx.update(|cx| FakeCompletionProvider::setup_test(cx));
cx.update(language_model::LanguageModelRegistry::test);
cx.update(completion::LanguageModelCompletionProvider::test);
cx.update(language_settings::init);
let text = indoc! {"
@ -2749,7 +2766,8 @@ mod tests {
cx: &mut TestAppContext,
mut rng: StdRng,
) {
cx.update(|cx| FakeCompletionProvider::setup_test(cx));
cx.update(LanguageModelRegistry::test);
cx.update(completion::LanguageModelCompletionProvider::test);
cx.set_global(cx.update(SettingsStore::test));
cx.update(language_settings::init);

View File

@ -1,7 +1,10 @@
use std::sync::Arc;
use crate::{assistant_settings::AssistantSettings, CompletionProvider, ToggleModelSelector};
use crate::{
assistant_settings::AssistantSettings, LanguageModelCompletionProvider, ToggleModelSelector,
};
use fs::Fs;
use language_model::LanguageModelRegistry;
use settings::update_settings_file;
use ui::{prelude::*, ButtonLike, ContextMenu, PopoverMenu, PopoverMenuHandle, Tooltip};
@ -23,26 +26,65 @@ impl RenderOnce for ModelSelector {
.with_handle(self.handle)
.menu(move |cx| {
ContextMenu::build(cx, |mut menu, cx| {
for model in CompletionProvider::global(cx).available_models() {
for (provider, available_models) in LanguageModelRegistry::global(cx)
.read(cx)
.available_models_grouped_by_provider(cx)
{
menu = menu.header(provider.0.clone());
if available_models.is_empty() {
menu = menu.custom_entry(
{
let model = model.clone();
move |_| Label::new(model.display_name()).into_any_element()
move |_| {
h_flex()
.w_full()
.gap_1()
.child(Icon::new(IconName::Settings))
.child(Label::new("Configure"))
.into_any()
}
},
{
let provider = provider.clone();
move |cx| {
LanguageModelCompletionProvider::global(cx).update(
cx,
|completion_provider, cx| {
completion_provider
.set_active_provider(provider.clone(), cx)
},
);
}
},
);
}
for available_model in available_models {
menu = menu.custom_entry(
{
let model_name = available_model.name().0.clone();
move |_| {
h_flex()
.w_full()
.child(Label::new(model_name.clone()))
.into_any()
}
},
{
let fs = self.fs.clone();
let model = model.clone();
let model = available_model.clone();
move |cx| {
let model = model.clone();
update_settings_file::<AssistantSettings>(
fs.clone(),
cx,
move |settings| settings.set_model(model),
move |settings, _| settings.set_model(model),
);
}
},
);
}
}
menu
})
.into()
@ -61,7 +103,10 @@ impl RenderOnce for ModelSelector {
.whitespace_nowrap()
.child(
Label::new(
CompletionProvider::global(cx).model().display_name(),
LanguageModelCompletionProvider::read_global(cx)
.active_model()
.map(|model| model.name().0)
.unwrap_or_else(|| "No model selected".into()),
)
.size(LabelSize::Small)
.color(Color::Muted),

View File

@ -1,6 +1,6 @@
use crate::{
slash_command::SlashCommandCompletionProvider, AssistantPanel, CompletionProvider,
InlineAssist, InlineAssistant,
slash_command::SlashCommandCompletionProvider, AssistantPanel, InlineAssist, InlineAssistant,
LanguageModelCompletionProvider,
};
use anyhow::{anyhow, Result};
use assets::Assets;
@ -636,9 +636,9 @@ impl PromptLibrary {
};
let prompt_editor = &self.prompt_editors[&active_prompt_id].body_editor;
let provider = CompletionProvider::global(cx);
let provider = LanguageModelCompletionProvider::read_global(cx);
let initial_prompt = action.prompt.clone();
if provider.is_authenticated() {
if provider.is_authenticated(cx) {
InlineAssistant::update_global(cx, |assistant, cx| {
assistant.assist(&prompt_editor, None, None, initial_prompt, cx)
})
@ -736,11 +736,8 @@ impl PromptLibrary {
cx.background_executor().timer(DEBOUNCE_TIMEOUT).await;
let token_count = cx
.update(|cx| {
let provider = CompletionProvider::global(cx);
let model = provider.model();
provider.count_tokens(
LanguageModelCompletionProvider::read_global(cx).count_tokens(
LanguageModelRequest {
model,
messages: vec![LanguageModelRequestMessage {
role: Role::System,
content: body.to_string(),
@ -806,7 +803,7 @@ impl PromptLibrary {
let prompt_metadata = self.store.metadata(prompt_id)?;
let prompt_editor = &self.prompt_editors[&prompt_id];
let focus_handle = prompt_editor.body_editor.focus_handle(cx);
let current_model = CompletionProvider::global(cx).model();
let current_model = LanguageModelCompletionProvider::read_global(cx).active_model();
let settings = ThemeSettings::get_global(cx);
Some(
@ -917,7 +914,11 @@ impl PromptLibrary {
format!(
"Model: {}",
current_model
.display_name()
.as_ref()
.map(|model| model
.name()
.0)
.unwrap_or_default()
),
cx,
)

View File

@ -1,7 +1,7 @@
use crate::{
assistant_settings::AssistantSettings, humanize_token_count,
prompts::generate_terminal_assistant_prompt, AssistantPanel, AssistantPanelEvent,
CompletionProvider,
LanguageModelCompletionProvider,
};
use anyhow::{Context as _, Result};
use client::telemetry::Telemetry;
@ -17,7 +17,9 @@ use gpui::{
Subscription, Task, TextStyle, UpdateGlobal, View, WeakView,
};
use language::Buffer;
use language_model::{LanguageModelRequest, LanguageModelRequestMessage, Role};
use language_model::{
LanguageModelRegistry, LanguageModelRequest, LanguageModelRequestMessage, Role,
};
use settings::{update_settings_file, Settings};
use std::{
cmp,
@ -215,8 +217,6 @@ impl TerminalInlineAssistant {
) -> Result<LanguageModelRequest> {
let assist = self.assists.get(&assist_id).context("invalid assist")?;
let model = CompletionProvider::global(cx).model();
let shell = std::env::var("SHELL").ok();
let working_directory = assist
.terminal
@ -268,7 +268,6 @@ impl TerminalInlineAssistant {
});
Ok(LanguageModelRequest {
model,
messages,
stop: Vec::new(),
temperature: 1.0,
@ -559,24 +558,39 @@ impl Render for PromptEditor {
PopoverMenu::new("model-switcher")
.menu(move |cx| {
ContextMenu::build(cx, |mut menu, cx| {
for model in CompletionProvider::global(cx).available_models() {
for available_model in
LanguageModelRegistry::read_global(cx).available_models(cx)
{
menu = menu.custom_entry(
{
let model = model.clone();
let model_name = available_model.name().0.clone();
let provider =
available_model.provider_name().0.clone();
move |_| {
Label::new(model.display_name())
.into_any_element()
h_flex()
.w_full()
.justify_between()
.child(Label::new(model_name.clone()))
.child(
div().ml_4().child(
Label::new(provider.clone())
.color(Color::Muted),
),
)
.into_any()
}
},
{
let fs = fs.clone();
let model = model.clone();
let model = available_model.clone();
move |cx| {
let model = model.clone();
update_settings_file::<AssistantSettings>(
fs.clone(),
cx,
move |settings| settings.set_model(model),
move |settings, _| {
settings.set_model(model)
},
);
}
},
@ -595,9 +609,10 @@ impl Render for PromptEditor {
Tooltip::with_meta(
format!(
"Using {}",
CompletionProvider::global(cx)
.model()
.display_name()
LanguageModelCompletionProvider::read_global(cx)
.active_model()
.map(|model| model.name().0)
.unwrap_or_else(|| "No model selected".into())
),
None,
"Change Model",
@ -748,7 +763,9 @@ impl PromptEditor {
})??;
let token_count = cx
.update(|cx| CompletionProvider::global(cx).count_tokens(request, cx))?
.update(|cx| {
LanguageModelCompletionProvider::read_global(cx).count_tokens(request, cx)
})?
.await?;
this.update(&mut cx, |this, cx| {
this.token_count = Some(token_count);
@ -878,7 +895,7 @@ impl PromptEditor {
}
fn render_token_count(&self, cx: &mut ViewContext<Self>) -> Option<impl IntoElement> {
let model = CompletionProvider::global(cx).model();
let model = LanguageModelCompletionProvider::read_global(cx).active_model()?;
let token_count = self.token_count?;
let max_token_count = model.max_token_count();
@ -1023,8 +1040,12 @@ impl Codegen {
self.transaction = Some(TerminalTransaction::start(self.terminal.clone()));
let telemetry = self.telemetry.clone();
let model_telemetry_id = prompt.model.telemetry_id();
let response = CompletionProvider::global(cx).stream_completion(prompt, cx);
let model_telemetry_id = LanguageModelCompletionProvider::read_global(cx)
.active_model()
.map(|m| m.telemetry_id())
.unwrap_or_default();
let response =
LanguageModelCompletionProvider::read_global(cx).stream_completion(prompt, cx);
self.generation = cx.spawn(|this, mut cx| async move {
let response = response.await;

View File

@ -90,6 +90,7 @@ git_hosting_providers.workspace = true
gpui = { workspace = true, features = ["test-support"] }
indoc.workspace = true
language = { workspace = true, features = ["test-support"] }
language_model = { workspace = true, features = ["test-support"] }
live_kit_client = { workspace = true, features = ["test-support"] }
lsp = { workspace = true, features = ["test-support"] }
menu.workspace = true

View File

@ -157,6 +157,8 @@ impl TestServer {
}
pub async fn create_client(&mut self, cx: &mut TestAppContext, name: &str) -> TestClient {
let fs = FakeFs::new(cx.executor());
cx.update(|cx| {
if cx.has_global::<SettingsStore>() {
panic!("Same cx used to create two test clients")
@ -265,7 +267,6 @@ impl TestServer {
git_hosting_provider_registry
.register_hosting_provider(Arc::new(git_hosting_providers::Github));
let fs = FakeFs::new(cx.executor());
let user_store = cx.new_model(|cx| UserStore::new(client.clone(), cx));
let workspace_store = cx.new_model(|cx| WorkspaceStore::new(client.clone(), cx));
let language_registry = Arc::new(LanguageRegistry::test(cx.executor()));
@ -297,7 +298,8 @@ impl TestServer {
menu::init();
dev_server_projects::init(client.clone(), cx);
settings::KeymapFile::load_asset(os_keymap, cx).unwrap();
completion::FakeCompletionProvider::setup_test(cx);
language_model::LanguageModelRegistry::test(cx);
completion::init(cx);
assistant::context_store::init(&client);
});

View File

@ -1107,9 +1107,11 @@ impl Panel for ChatPanel {
}
fn set_position(&mut self, position: DockPosition, cx: &mut ViewContext<Self>) {
settings::update_settings_file::<ChatPanelSettings>(self.fs.clone(), cx, move |settings| {
settings.dock = Some(position)
});
settings::update_settings_file::<ChatPanelSettings>(
self.fs.clone(),
cx,
move |settings, _| settings.dock = Some(position),
);
}
fn size(&self, cx: &gpui::WindowContext) -> Pixels {

View File

@ -2806,7 +2806,7 @@ impl Panel for CollabPanel {
settings::update_settings_file::<CollaborationPanelSettings>(
self.fs.clone(),
cx,
move |settings| settings.dock = Some(position),
move |settings, _| settings.dock = Some(position),
);
}

View File

@ -672,7 +672,7 @@ impl Panel for NotificationPanel {
settings::update_settings_file::<NotificationPanelSettings>(
self.fs.clone(),
cx,
move |settings| settings.dock = Some(position),
move |settings, _| settings.dock = Some(position),
);
}

View File

@ -16,34 +16,20 @@ doctest = false
test-support = [
"editor/test-support",
"language/test-support",
"language_model/test-support",
"project/test-support",
"text/test-support",
]
[dependencies]
anthropic = { workspace = true, features = ["schemars"] }
anyhow.workspace = true
client.workspace = true
collections.workspace = true
editor.workspace = true
futures.workspace = true
gpui.workspace = true
http.workspace = true
language_model.workspace = true
log.workspace = true
menu.workspace = true
ollama = { workspace = true, features = ["schemars"] }
open_ai = { workspace = true, features = ["schemars"] }
parking_lot.workspace = true
serde.workspace = true
serde_json.workspace = true
settings.workspace = true
smol.workspace = true
strum.workspace = true
theme.workspace = true
tiktoken-rs.workspace = true
ui.workspace = true
util.workspace = true
[dev-dependencies]
ctor.workspace = true
@ -51,6 +37,7 @@ editor = { workspace = true, features = ["test-support"] }
env_logger.workspace = true
language = { workspace = true, features = ["test-support"] }
project = { workspace = true, features = ["test-support"] }
language_model = { workspace = true, features = ["test-support"] }
rand.workspace = true
text = { workspace = true, features = ["test-support"] }
unindent.workspace = true

View File

@ -1,318 +0,0 @@
use crate::{count_open_ai_tokens, LanguageModelCompletionProvider};
use crate::{CompletionProvider, LanguageModel, LanguageModelRequest};
use anthropic::{stream_completion, Model as AnthropicModel, Request, RequestMessage};
use anyhow::{anyhow, Result};
use editor::{Editor, EditorElement, EditorStyle};
use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
use gpui::{AnyView, AppContext, Task, TextStyle, View};
use http::HttpClient;
use language_model::Role;
use settings::Settings;
use std::time::Duration;
use std::{env, sync::Arc};
use strum::IntoEnumIterator;
use theme::ThemeSettings;
use ui::prelude::*;
use util::ResultExt;
pub struct AnthropicCompletionProvider {
api_key: Option<String>,
api_url: String,
model: AnthropicModel,
http_client: Arc<dyn HttpClient>,
low_speed_timeout: Option<Duration>,
settings_version: usize,
}
impl LanguageModelCompletionProvider for AnthropicCompletionProvider {
fn available_models(&self) -> Vec<LanguageModel> {
AnthropicModel::iter()
.map(LanguageModel::Anthropic)
.collect()
}
fn settings_version(&self) -> usize {
self.settings_version
}
fn is_authenticated(&self) -> bool {
self.api_key.is_some()
}
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
if self.is_authenticated() {
Task::ready(Ok(()))
} else {
let api_url = self.api_url.clone();
cx.spawn(|mut cx| async move {
let api_key = if let Ok(api_key) = env::var("ANTHROPIC_API_KEY") {
api_key
} else {
let (_, api_key) = cx
.update(|cx| cx.read_credentials(&api_url))?
.await?
.ok_or_else(|| anyhow!("credentials not found"))?;
String::from_utf8(api_key)?
};
cx.update_global::<CompletionProvider, _>(|provider, _cx| {
provider.update_current_as::<_, AnthropicCompletionProvider>(|provider| {
provider.api_key = Some(api_key);
});
})
})
}
}
fn reset_credentials(&self, cx: &AppContext) -> Task<Result<()>> {
let delete_credentials = cx.delete_credentials(&self.api_url);
cx.spawn(|mut cx| async move {
delete_credentials.await.log_err();
cx.update_global::<CompletionProvider, _>(|provider, _cx| {
provider.update_current_as::<_, AnthropicCompletionProvider>(|provider| {
provider.api_key = None;
});
})
})
}
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
cx.new_view(|cx| AuthenticationPrompt::new(self.api_url.clone(), cx))
.into()
}
fn model(&self) -> LanguageModel {
LanguageModel::Anthropic(self.model.clone())
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
count_open_ai_tokens(request, cx.background_executor())
}
fn stream_completion(
&self,
request: LanguageModelRequest,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
let request = self.to_anthropic_request(request);
let http_client = self.http_client.clone();
let api_key = self.api_key.clone();
let api_url = self.api_url.clone();
let low_speed_timeout = self.low_speed_timeout;
async move {
let api_key = api_key.ok_or_else(|| anyhow!("missing api key"))?;
let request = stream_completion(
http_client.as_ref(),
&api_url,
&api_key,
request,
low_speed_timeout,
);
let response = request.await?;
let stream = response
.filter_map(|response| async move {
match response {
Ok(response) => match response {
anthropic::ResponseEvent::ContentBlockStart {
content_block, ..
} => match content_block {
anthropic::ContentBlock::Text { text } => Some(Ok(text)),
},
anthropic::ResponseEvent::ContentBlockDelta { delta, .. } => {
match delta {
anthropic::TextDelta::TextDelta { text } => Some(Ok(text)),
}
}
_ => None,
},
Err(error) => Some(Err(error)),
}
})
.boxed();
Ok(stream)
}
.boxed()
}
fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
self
}
}
impl AnthropicCompletionProvider {
pub fn new(
model: AnthropicModel,
api_url: String,
http_client: Arc<dyn HttpClient>,
low_speed_timeout: Option<Duration>,
settings_version: usize,
) -> Self {
Self {
api_key: None,
api_url,
model,
http_client,
low_speed_timeout,
settings_version,
}
}
pub fn update(
&mut self,
model: AnthropicModel,
api_url: String,
low_speed_timeout: Option<Duration>,
settings_version: usize,
) {
self.model = model;
self.api_url = api_url;
self.low_speed_timeout = low_speed_timeout;
self.settings_version = settings_version;
}
fn to_anthropic_request(&self, mut request: LanguageModelRequest) -> Request {
request.preprocess_anthropic();
let model = match request.model {
LanguageModel::Anthropic(model) => model,
_ => self.model.clone(),
};
let mut system_message = String::new();
if request
.messages
.first()
.map_or(false, |message| message.role == Role::System)
{
system_message = request.messages.remove(0).content;
}
Request {
model,
messages: request
.messages
.iter()
.map(|msg| RequestMessage {
role: match msg.role {
Role::User => anthropic::Role::User,
Role::Assistant => anthropic::Role::Assistant,
Role::System => unreachable!("filtered out by preprocess_request"),
},
content: msg.content.clone(),
})
.collect(),
stream: true,
system: system_message,
max_tokens: 4092,
}
}
}
struct AuthenticationPrompt {
api_key: View<Editor>,
api_url: String,
}
impl AuthenticationPrompt {
fn new(api_url: String, cx: &mut WindowContext) -> Self {
Self {
api_key: cx.new_view(|cx| {
let mut editor = Editor::single_line(cx);
editor.set_placeholder_text(
"sk-000000000000000000000000000000000000000000000000",
cx,
);
editor
}),
api_url,
}
}
fn save_api_key(&mut self, _: &menu::Confirm, cx: &mut ViewContext<Self>) {
let api_key = self.api_key.read(cx).text(cx);
if api_key.is_empty() {
return;
}
let write_credentials = cx.write_credentials(&self.api_url, "Bearer", api_key.as_bytes());
cx.spawn(|_, mut cx| async move {
write_credentials.await?;
cx.update_global::<CompletionProvider, _>(|provider, _cx| {
provider.update_current_as::<_, AnthropicCompletionProvider>(|provider| {
provider.api_key = Some(api_key);
});
})
})
.detach_and_log_err(cx);
}
fn render_api_key_editor(&self, cx: &mut ViewContext<Self>) -> impl IntoElement {
let settings = ThemeSettings::get_global(cx);
let text_style = TextStyle {
color: cx.theme().colors().text,
font_family: settings.ui_font.family.clone(),
font_features: settings.ui_font.features.clone(),
font_size: rems(0.875).into(),
font_weight: settings.ui_font.weight,
line_height: relative(1.3),
..Default::default()
};
EditorElement::new(
&self.api_key,
EditorStyle {
background: cx.theme().colors().editor_background,
local_player: cx.theme().players().local(),
text: text_style,
..Default::default()
},
)
}
}
impl Render for AuthenticationPrompt {
fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
const INSTRUCTIONS: [&str; 4] = [
"To use the assistant panel or inline assistant, you need to add your Anthropic API key.",
"You can create an API key at: https://console.anthropic.com/settings/keys",
"",
"Paste your Anthropic API key below and hit enter to use the assistant:",
];
v_flex()
.p_4()
.size_full()
.on_action(cx.listener(Self::save_api_key))
.children(
INSTRUCTIONS.map(|instruction| Label::new(instruction).size(LabelSize::Small)),
)
.child(
h_flex()
.w_full()
.my_2()
.px_2()
.py_1()
.bg(cx.theme().colors().editor_background)
.rounded_md()
.child(self.render_api_key_editor(cx)),
)
.child(
Label::new(
"You can also assign the ANTHROPIC_API_KEY environment variable and restart Zed.",
)
.size(LabelSize::Small),
)
.child(
h_flex()
.gap_2()
.child(Label::new("Click on").size(LabelSize::Small))
.child(Icon::new(IconName::ZedAssistant).size(IconSize::XSmall))
.child(
Label::new("in the status bar to close this panel.").size(LabelSize::Small),
),
)
.into_any()
}
}

View File

@ -1,214 +0,0 @@
use crate::{
count_open_ai_tokens, CompletionProvider, LanguageModel, LanguageModelCompletionProvider,
LanguageModelRequest,
};
use anyhow::{anyhow, Result};
use client::{proto, Client};
use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt, TryFutureExt};
use gpui::{AnyView, AppContext, Task};
use language_model::CloudModel;
use std::{future, sync::Arc};
use strum::IntoEnumIterator;
use ui::prelude::*;
pub struct CloudCompletionProvider {
client: Arc<Client>,
model: CloudModel,
settings_version: usize,
status: client::Status,
_maintain_client_status: Task<()>,
}
impl CloudCompletionProvider {
pub fn new(
model: CloudModel,
client: Arc<Client>,
settings_version: usize,
cx: &mut AppContext,
) -> Self {
let mut status_rx = client.status();
let status = *status_rx.borrow();
let maintain_client_status = cx.spawn(|mut cx| async move {
while let Some(status) = status_rx.next().await {
let _ = cx.update_global::<CompletionProvider, _>(|provider, _cx| {
provider.update_current_as::<_, Self>(|provider| {
provider.status = status;
});
});
}
});
Self {
client,
model,
settings_version,
status,
_maintain_client_status: maintain_client_status,
}
}
pub fn update(&mut self, model: CloudModel, settings_version: usize) {
self.model = model;
self.settings_version = settings_version;
}
}
impl LanguageModelCompletionProvider for CloudCompletionProvider {
fn available_models(&self) -> Vec<LanguageModel> {
let mut custom_model = if matches!(self.model, CloudModel::Custom { .. }) {
Some(self.model.clone())
} else {
None
};
CloudModel::iter()
.filter_map(move |model| {
if let CloudModel::Custom { .. } = model {
custom_model.take()
} else {
Some(model)
}
})
.map(LanguageModel::Cloud)
.collect()
}
fn settings_version(&self) -> usize {
self.settings_version
}
fn is_authenticated(&self) -> bool {
self.status.is_connected()
}
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
let client = self.client.clone();
cx.spawn(move |cx| async move { client.authenticate_and_connect(true, &cx).await })
}
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
cx.new_view(|_cx| AuthenticationPrompt).into()
}
fn reset_credentials(&self, _cx: &AppContext) -> Task<Result<()>> {
Task::ready(Ok(()))
}
fn model(&self) -> LanguageModel {
LanguageModel::Cloud(self.model.clone())
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
match &request.model {
LanguageModel::Cloud(CloudModel::Gpt4)
| LanguageModel::Cloud(CloudModel::Gpt4Turbo)
| LanguageModel::Cloud(CloudModel::Gpt4Omni)
| LanguageModel::Cloud(CloudModel::Gpt3Point5Turbo) => {
count_open_ai_tokens(request, cx.background_executor())
}
LanguageModel::Cloud(
CloudModel::Claude3_5Sonnet
| CloudModel::Claude3Opus
| CloudModel::Claude3Sonnet
| CloudModel::Claude3Haiku,
) => {
// Can't find a tokenizer for Claude 3, so for now just use the same as OpenAI's as an approximation.
count_open_ai_tokens(request, cx.background_executor())
}
LanguageModel::Cloud(CloudModel::Custom { name, .. }) => {
if name.starts_with("anthropic/") {
// Can't find a tokenizer for Anthropic models, so for now just use the same as OpenAI's as an approximation.
count_open_ai_tokens(request, cx.background_executor())
} else {
let request = self.client.request(proto::CountTokensWithLanguageModel {
model: name.clone(),
messages: request
.messages
.iter()
.map(|message| message.to_proto())
.collect(),
});
async move {
let response = request.await?;
Ok(response.token_count as usize)
}
.boxed()
}
}
_ => future::ready(Err(anyhow!("invalid model"))).boxed(),
}
}
fn stream_completion(
&self,
mut request: LanguageModelRequest,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
request.preprocess();
let request = proto::CompleteWithLanguageModel {
model: request.model.id().to_string(),
messages: request
.messages
.iter()
.map(|message| message.to_proto())
.collect(),
stop: request.stop,
temperature: request.temperature,
tools: Vec::new(),
tool_choice: None,
};
self.client
.request_stream(request)
.map_ok(|stream| {
stream
.filter_map(|response| async move {
match response {
Ok(mut response) => Some(Ok(response.choices.pop()?.delta?.content?)),
Err(error) => Some(Err(error)),
}
})
.boxed()
})
.boxed()
}
fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
self
}
}
struct AuthenticationPrompt;
impl Render for AuthenticationPrompt {
fn render(&mut self, _cx: &mut ViewContext<Self>) -> impl IntoElement {
const LABEL: &str = "Generate and analyze code with language models. You can dialog with the assistant in this panel or transform code inline.";
v_flex().gap_6().p_4().child(Label::new(LABEL)).child(
v_flex()
.gap_2()
.child(
Button::new("sign_in", "Sign in")
.icon_color(Color::Muted)
.icon(IconName::Github)
.icon_position(IconPosition::Start)
.style(ButtonStyle::Filled)
.full_width()
.on_click(|_, cx| {
CompletionProvider::global(cx)
.authenticate(cx)
.detach_and_log_err(cx);
}),
)
.child(
div().flex().w_full().items_center().child(
Label::new("Sign in to enable collaboration.")
.color(Color::Muted)
.size(LabelSize::Small),
),
),
)
}
}

View File

@ -1,31 +1,37 @@
mod anthropic;
mod cloud;
#[cfg(any(test, feature = "test-support"))]
mod fake;
mod ollama;
mod open_ai;
pub use anthropic::*;
use anyhow::Result;
use client::Client;
pub use cloud::*;
#[cfg(any(test, feature = "test-support"))]
pub use fake::*;
use futures::{future::BoxFuture, stream::BoxStream, StreamExt};
use gpui::{AnyView, AppContext, Task, WindowContext};
use language_model::{LanguageModel, LanguageModelRequest};
pub use ollama::*;
pub use open_ai::*;
use parking_lot::RwLock;
use anyhow::{anyhow, Result};
use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
use gpui::{AppContext, Global, Model, ModelContext, Task};
use language_model::{
LanguageModel, LanguageModelProvider, LanguageModelProviderName, LanguageModelRegistry,
LanguageModelRequest,
};
use smol::lock::{Semaphore, SemaphoreGuardArc};
use std::{any::Any, pin::Pin, sync::Arc, task::Poll};
use std::{pin::Pin, sync::Arc, task::Poll};
use ui::Context;
pub struct CompletionResponse {
inner: BoxStream<'static, Result<String>>,
pub fn init(cx: &mut AppContext) {
let completion_provider = cx.new_model(|cx| LanguageModelCompletionProvider::new(cx));
cx.set_global(GlobalLanguageModelCompletionProvider(completion_provider));
}
struct GlobalLanguageModelCompletionProvider(Model<LanguageModelCompletionProvider>);
impl Global for GlobalLanguageModelCompletionProvider {}
pub struct LanguageModelCompletionProvider {
active_provider: Option<Arc<dyn LanguageModelProvider>>,
active_model: Option<Arc<dyn LanguageModel>>,
request_limiter: Arc<Semaphore>,
}
const MAX_CONCURRENT_COMPLETION_REQUESTS: usize = 4;
pub struct LanguageModelCompletionResponse {
pub inner: BoxStream<'static, Result<String>>,
_lock: SemaphoreGuardArc,
}
impl futures::Stream for CompletionResponse {
impl futures::Stream for LanguageModelCompletionResponse {
type Item = Result<String>;
fn poll_next(
@ -36,73 +42,96 @@ impl futures::Stream for CompletionResponse {
}
}
pub trait LanguageModelCompletionProvider: Send + Sync {
fn available_models(&self) -> Vec<LanguageModel>;
fn settings_version(&self) -> usize;
fn is_authenticated(&self) -> bool;
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>>;
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView;
fn reset_credentials(&self, cx: &AppContext) -> Task<Result<()>>;
fn model(&self) -> LanguageModel;
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>>;
fn stream_completion(
&self,
request: LanguageModelRequest,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>>;
fn as_any_mut(&mut self) -> &mut dyn Any;
impl LanguageModelCompletionProvider {
pub fn global(cx: &AppContext) -> Model<Self> {
cx.global::<GlobalLanguageModelCompletionProvider>()
.0
.clone()
}
const MAX_CONCURRENT_COMPLETION_REQUESTS: usize = 4;
pub struct CompletionProvider {
provider: Arc<RwLock<dyn LanguageModelCompletionProvider>>,
client: Option<Arc<Client>>,
request_limiter: Arc<Semaphore>,
pub fn read_global(cx: &AppContext) -> &Self {
cx.global::<GlobalLanguageModelCompletionProvider>()
.0
.read(cx)
}
impl CompletionProvider {
pub fn new(
provider: Arc<RwLock<dyn LanguageModelCompletionProvider>>,
client: Option<Arc<Client>>,
) -> Self {
#[cfg(any(test, feature = "test-support"))]
pub fn test(cx: &mut AppContext) {
let provider = cx.new_model(|cx| {
let mut this = Self::new(cx);
let available_model = LanguageModelRegistry::read_global(cx)
.available_models(cx)
.first()
.unwrap()
.clone();
this.set_active_model(available_model, cx);
this
});
cx.set_global(GlobalLanguageModelCompletionProvider(provider));
}
pub fn new(cx: &mut ModelContext<Self>) -> Self {
cx.observe(&LanguageModelRegistry::global(cx), |_, _, cx| {
cx.notify();
})
.detach();
Self {
provider,
client,
active_provider: None,
active_model: None,
request_limiter: Arc::new(Semaphore::new(MAX_CONCURRENT_COMPLETION_REQUESTS)),
}
}
pub fn available_models(&self) -> Vec<LanguageModel> {
self.provider.read().available_models()
pub fn active_provider(&self) -> Option<Arc<dyn LanguageModelProvider>> {
self.active_provider.clone()
}
pub fn settings_version(&self) -> usize {
self.provider.read().settings_version()
pub fn set_active_provider(
&mut self,
provider_name: LanguageModelProviderName,
cx: &mut ModelContext<Self>,
) {
self.active_provider = LanguageModelRegistry::read_global(cx).provider(&provider_name);
self.active_model = None;
cx.notify();
}
pub fn is_authenticated(&self) -> bool {
self.provider.read().is_authenticated()
pub fn active_model(&self) -> Option<Arc<dyn LanguageModel>> {
self.active_model.clone()
}
pub fn set_active_model(&mut self, model: Arc<dyn LanguageModel>, cx: &mut ModelContext<Self>) {
if self.active_model.as_ref().map_or(false, |m| {
m.id() == model.id() && m.provider_name() == model.provider_name()
}) {
return;
}
self.active_provider =
LanguageModelRegistry::read_global(cx).provider(&model.provider_name());
self.active_model = Some(model);
cx.notify();
}
pub fn is_authenticated(&self, cx: &AppContext) -> bool {
self.active_provider
.as_ref()
.map_or(false, |provider| provider.is_authenticated(cx))
}
pub fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
self.provider.read().authenticate(cx)
}
pub fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
self.provider.read().authentication_prompt(cx)
self.active_provider
.as_ref()
.map_or(Task::ready(Ok(())), |provider| provider.authenticate(cx))
}
pub fn reset_credentials(&self, cx: &AppContext) -> Task<Result<()>> {
self.provider.read().reset_credentials(cx)
}
pub fn model(&self) -> LanguageModel {
self.provider.read().model()
self.active_provider
.as_ref()
.map_or(Task::ready(Ok(())), |provider| {
provider.reset_credentials(cx)
})
}
pub fn count_tokens(
@ -110,25 +139,31 @@ impl CompletionProvider {
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
self.provider.read().count_tokens(request, cx)
if let Some(model) = self.active_model() {
model.count_tokens(request, cx)
} else {
std::future::ready(Err(anyhow!("No active model set"))).boxed()
}
}
pub fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AppContext,
) -> Task<Result<CompletionResponse>> {
) -> Task<Result<LanguageModelCompletionResponse>> {
if let Some(language_model) = self.active_model() {
let rate_limiter = self.request_limiter.clone();
let provider = self.provider.clone();
cx.foreground_executor().spawn(async move {
cx.spawn(|cx| async move {
let lock = rate_limiter.acquire_arc().await;
let response = provider.read().stream_completion(request);
let response = response.await?;
Ok(CompletionResponse {
let response = language_model.stream_completion(request, &cx).await?;
Ok(LanguageModelCompletionResponse {
inner: response,
_lock: lock,
})
})
} else {
Task::ready(Err(anyhow!("No active model set")))
}
}
pub fn complete(&self, request: LanguageModelRequest, cx: &AppContext) -> Task<Result<String>> {
@ -143,63 +178,43 @@ impl CompletionProvider {
Ok(completion)
})
}
pub fn update_provider(
&mut self,
get_provider: impl FnOnce(Arc<Client>) -> Arc<RwLock<dyn LanguageModelCompletionProvider>>,
) {
if let Some(client) = &self.client {
self.provider = get_provider(Arc::clone(client));
} else {
log::warn!("completion provider cannot be updated because its client was not set");
}
}
}
impl gpui::Global for CompletionProvider {}
impl CompletionProvider {
pub fn global(cx: &AppContext) -> &Self {
cx.global::<Self>()
}
pub fn update_current_as<R, T: LanguageModelCompletionProvider + 'static>(
&mut self,
update: impl FnOnce(&mut T) -> R,
) -> Option<R> {
let mut provider = self.provider.write();
if let Some(provider) = provider.as_any_mut().downcast_mut::<T>() {
Some(update(provider))
} else {
None
}
}
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use futures::StreamExt;
use gpui::AppContext;
use parking_lot::RwLock;
use settings::SettingsStore;
use smol::stream::StreamExt;
use ui::Context;
use crate::{
CompletionProvider, FakeCompletionProvider, LanguageModelRequest,
MAX_CONCURRENT_COMPLETION_REQUESTS,
LanguageModelCompletionProvider, LanguageModelRequest, MAX_CONCURRENT_COMPLETION_REQUESTS,
};
use language_model::LanguageModelRegistry;
#[gpui::test]
fn test_rate_limiting(cx: &mut AppContext) {
SettingsStore::test(cx);
let fake_provider = FakeCompletionProvider::setup_test(cx);
let fake_provider = LanguageModelRegistry::test(cx);
let provider = CompletionProvider::new(Arc::new(RwLock::new(fake_provider.clone())), None);
let model = LanguageModelRegistry::read_global(cx)
.available_models(cx)
.first()
.cloned()
.unwrap();
let provider = cx.new_model(|cx| {
let mut provider = LanguageModelCompletionProvider::new(cx);
provider.set_active_model(model.clone(), cx);
provider
});
let fake_model = fake_provider.test_model();
// Enqueue some requests
for i in 0..MAX_CONCURRENT_COMPLETION_REQUESTS * 2 {
let response = provider.stream_completion(
let response = provider.read(cx).stream_completion(
LanguageModelRequest {
temperature: i as f32 / 10.0,
..Default::default()
@ -216,23 +231,18 @@ mod tests {
.detach();
}
cx.background_executor().run_until_parked();
assert_eq!(
fake_provider.completion_count(),
fake_model.completion_count(),
MAX_CONCURRENT_COMPLETION_REQUESTS
);
// Get the first completion request that is in flight and mark it as completed.
let completion = fake_provider
.pending_completions()
.into_iter()
.next()
.unwrap();
fake_provider.finish_completion(&completion);
let completion = fake_model.pending_completions().into_iter().next().unwrap();
fake_model.finish_completion(&completion);
// Ensure that the number of in-flight completion requests is reduced.
assert_eq!(
fake_provider.completion_count(),
fake_model.completion_count(),
MAX_CONCURRENT_COMPLETION_REQUESTS - 1
);
@ -240,32 +250,32 @@ mod tests {
// Ensure that another completion request was allowed to acquire the lock.
assert_eq!(
fake_provider.completion_count(),
fake_model.completion_count(),
MAX_CONCURRENT_COMPLETION_REQUESTS
);
// Mark all completion requests as finished that are in flight.
for request in fake_provider.pending_completions() {
fake_provider.finish_completion(&request);
for request in fake_model.pending_completions() {
fake_model.finish_completion(&request);
}
assert_eq!(fake_provider.completion_count(), 0);
assert_eq!(fake_model.completion_count(), 0);
// Wait until the background tasks acquire the lock again.
cx.background_executor().run_until_parked();
assert_eq!(
fake_provider.completion_count(),
fake_model.completion_count(),
MAX_CONCURRENT_COMPLETION_REQUESTS - 1
);
// Finish all remaining completion requests.
for request in fake_provider.pending_completions() {
fake_provider.finish_completion(&request);
for request in fake_model.pending_completions() {
fake_model.finish_completion(&request);
}
cx.background_executor().run_until_parked();
assert_eq!(fake_provider.completion_count(), 0);
assert_eq!(fake_model.completion_count(), 0);
}
}

View File

@ -1,115 +0,0 @@
use anyhow::Result;
use collections::HashMap;
use futures::{channel::mpsc, future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
use gpui::{AnyView, AppContext, Task};
use std::sync::Arc;
use ui::WindowContext;
use crate::{LanguageModel, LanguageModelCompletionProvider, LanguageModelRequest};
#[derive(Clone, Default)]
pub struct FakeCompletionProvider {
current_completion_txs: Arc<parking_lot::Mutex<HashMap<String, mpsc::UnboundedSender<String>>>>,
}
impl FakeCompletionProvider {
pub fn setup_test(cx: &mut AppContext) -> Self {
use crate::CompletionProvider;
use parking_lot::RwLock;
let this = Self::default();
let provider = CompletionProvider::new(Arc::new(RwLock::new(this.clone())), None);
cx.set_global(provider);
this
}
pub fn pending_completions(&self) -> Vec<LanguageModelRequest> {
self.current_completion_txs
.lock()
.keys()
.map(|k| serde_json::from_str(k).unwrap())
.collect()
}
pub fn completion_count(&self) -> usize {
self.current_completion_txs.lock().len()
}
pub fn send_completion_chunk(&self, request: &LanguageModelRequest, chunk: String) {
let json = serde_json::to_string(request).unwrap();
self.current_completion_txs
.lock()
.get(&json)
.unwrap()
.unbounded_send(chunk)
.unwrap();
}
pub fn send_last_completion_chunk(&self, chunk: String) {
self.send_completion_chunk(self.pending_completions().last().unwrap(), chunk);
}
pub fn finish_completion(&self, request: &LanguageModelRequest) {
self.current_completion_txs
.lock()
.remove(&serde_json::to_string(request).unwrap())
.unwrap();
}
pub fn finish_last_completion(&self) {
self.finish_completion(self.pending_completions().last().unwrap());
}
}
impl LanguageModelCompletionProvider for FakeCompletionProvider {
fn available_models(&self) -> Vec<LanguageModel> {
vec![LanguageModel::default()]
}
fn settings_version(&self) -> usize {
0
}
fn is_authenticated(&self) -> bool {
true
}
fn authenticate(&self, _cx: &AppContext) -> Task<Result<()>> {
Task::ready(Ok(()))
}
fn authentication_prompt(&self, _cx: &mut WindowContext) -> AnyView {
unimplemented!()
}
fn reset_credentials(&self, _cx: &AppContext) -> Task<Result<()>> {
Task::ready(Ok(()))
}
fn model(&self) -> LanguageModel {
LanguageModel::default()
}
fn count_tokens(
&self,
_request: LanguageModelRequest,
_cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
futures::future::ready(Ok(0)).boxed()
}
fn stream_completion(
&self,
_request: LanguageModelRequest,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
let (tx, rx) = mpsc::unbounded();
self.current_completion_txs
.lock()
.insert(serde_json::to_string(&_request).unwrap(), tx);
async move { Ok(rx.map(Ok).boxed()) }.boxed()
}
fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
self
}
}

View File

@ -10384,7 +10384,7 @@ impl Editor {
};
let fs = workspace.read(cx).app_state().fs.clone();
let current_show = TabBarSettings::get_global(cx).show;
update_settings_file::<TabBarSettings>(fs, cx, move |setting| {
update_settings_file::<TabBarSettings>(fs, cx, move |setting, _| {
setting.show = Some(!current_show);
});
}

View File

@ -178,7 +178,7 @@ impl PickerDelegate for ExtensionVersionSelectorDelegate {
update_settings_file::<ExtensionSettings>(self.fs.clone(), cx, {
let extension_id = extension_id.clone();
move |settings| {
move |settings, _| {
settings.auto_update_extensions.insert(extension_id, false);
}
});

View File

@ -910,7 +910,7 @@ impl ExtensionsPage {
if let Some(workspace) = self.workspace.upgrade() {
let fs = workspace.read(cx).app_state().fs.clone();
let selection = *selection;
settings::update_settings_file::<T>(fs, cx, move |settings| {
settings::update_settings_file::<T>(fs, cx, move |settings, _| {
let value = match selection {
Selection::Unselected => false,
Selection::Selected => true,

View File

@ -29,6 +29,11 @@ impl FeatureFlag for Remoting {
const NAME: &'static str = "remoting";
}
pub struct LanguageModels {}
impl FeatureFlag for LanguageModels {
const NAME: &'static str = "language-models";
}
pub struct TerminalInlineAssist {}
impl FeatureFlag for TerminalInlineAssist {
const NAME: &'static str = "terminal-inline-assist";
@ -65,6 +70,10 @@ pub trait FeatureFlagAppExt {
fn set_staff(&mut self, staff: bool);
fn has_flag<T: FeatureFlag>(&self) -> bool;
fn is_staff(&self) -> bool;
fn observe_flag<T: FeatureFlag, F>(&mut self, callback: F) -> Subscription
where
F: Fn(bool, &mut AppContext) + 'static;
}
impl FeatureFlagAppExt for AppContext {
@ -90,4 +99,14 @@ impl FeatureFlagAppExt for AppContext {
.map(|flags| flags.staff)
.unwrap_or(false)
}
fn observe_flag<T: FeatureFlag, F>(&mut self, callback: F) -> Subscription
where
F: Fn(bool, &mut AppContext) + 'static,
{
self.observe_global::<FeatureFlags>(move |cx| {
let feature_flags = cx.global::<FeatureFlags>();
callback(feature_flags.has_flag(<T as FeatureFlag>::NAME), cx);
})
}
}

View File

@ -420,7 +420,7 @@ async fn configure_disabled_globs(
fn toggle_inline_completions_globally(fs: Arc<dyn Fs>, cx: &mut AppContext) {
let show_inline_completions =
all_language_settings(None, cx).inline_completions_enabled(None, None);
update_settings_file::<AllLanguageSettings>(fs, cx, move |file| {
update_settings_file::<AllLanguageSettings>(fs, cx, move |file, _| {
file.defaults.show_inline_completions = Some(!show_inline_completions)
});
}
@ -432,7 +432,7 @@ fn toggle_inline_completions_for_language(
) {
let show_inline_completions =
all_language_settings(None, cx).inline_completions_enabled(Some(&language), None);
update_settings_file::<AllLanguageSettings>(fs, cx, move |file| {
update_settings_file::<AllLanguageSettings>(fs, cx, move |file, _| {
file.languages
.entry(language.name())
.or_default()
@ -441,7 +441,7 @@ fn toggle_inline_completions_for_language(
}
fn hide_copilot(fs: Arc<dyn Fs>, cx: &mut AppContext) {
update_settings_file::<AllLanguageSettings>(fs, cx, move |file| {
update_settings_file::<AllLanguageSettings>(fs, cx, move |file, _| {
file.features
.get_or_insert(Default::default())
.inline_completion_provider = Some(InlineCompletionProvider::None);

View File

@ -22,12 +22,27 @@ test-support = [
[dependencies]
anthropic = { workspace = true, features = ["schemars"] }
anyhow.workspace = true
client.workspace = true
collections.workspace = true
editor.workspace = true
feature_flags.workspace = true
futures.workspace = true
gpui.workspace = true
http.workspace = true
menu.workspace = true
ollama = { workspace = true, features = ["schemars"] }
open_ai = { workspace = true, features = ["schemars"] }
proto = { workspace = true, features = ["test-support"] }
schemars.workspace = true
serde.workspace = true
serde_json.workspace = true
settings.workspace = true
strum.workspace = true
proto = { workspace = true, features = ["test-support"] }
theme.workspace = true
tiktoken-rs.workspace = true
ui.workspace = true
util.workspace = true
[dev-dependencies]
ctor.workspace = true

View File

@ -1,7 +1,84 @@
mod model;
pub mod provider;
mod registry;
mod request;
mod role;
pub mod settings;
use std::sync::Arc;
use anyhow::Result;
use client::Client;
use futures::{future::BoxFuture, stream::BoxStream};
use gpui::{AnyView, AppContext, AsyncAppContext, SharedString, Task, WindowContext};
pub use model::*;
pub use registry::*;
pub use request::*;
pub use role::*;
pub fn init(client: Arc<Client>, cx: &mut AppContext) {
settings::init(cx);
registry::init(client, cx);
}
pub trait LanguageModel: Send + Sync {
fn id(&self) -> LanguageModelId;
fn name(&self) -> LanguageModelName;
fn provider_name(&self) -> LanguageModelProviderName;
fn telemetry_id(&self) -> String;
fn max_token_count(&self) -> usize;
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>>;
fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AsyncAppContext,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>>;
}
pub trait LanguageModelProvider: 'static {
fn name(&self) -> LanguageModelProviderName;
fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>>;
fn is_authenticated(&self, cx: &AppContext) -> bool;
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>>;
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView;
fn reset_credentials(&self, cx: &AppContext) -> Task<Result<()>>;
}
pub trait LanguageModelProviderState: 'static {
fn subscribe<T: 'static>(&self, cx: &mut gpui::ModelContext<T>) -> Option<gpui::Subscription>;
}
#[derive(Clone, Eq, PartialEq, Hash, Debug)]
pub struct LanguageModelId(pub SharedString);
#[derive(Clone, Eq, PartialEq, Hash, Debug)]
pub struct LanguageModelName(pub SharedString);
#[derive(Clone, Eq, PartialEq, Hash, Debug)]
pub struct LanguageModelProviderName(pub SharedString);
impl From<String> for LanguageModelId {
fn from(value: String) -> Self {
Self(SharedString::from(value))
}
}
impl From<String> for LanguageModelName {
fn from(value: String) -> Self {
Self(SharedString::from(value))
}
}
impl From<String> for LanguageModelProviderName {
fn from(value: String) -> Self {
Self(SharedString::from(value))
}
}

View File

@ -1,4 +1,5 @@
pub use anthropic::Model as AnthropicModel;
use anyhow::{anyhow, Result};
pub use ollama::Model as OllamaModel;
pub use open_ai::Model as OpenAiModel;
use schemars::JsonSchema;
@ -38,6 +39,23 @@ pub enum CloudModel {
}
impl CloudModel {
pub fn from_id(value: &str) -> Result<Self> {
match value {
"gpt-3.5-turbo" => Ok(Self::Gpt3Point5Turbo),
"gpt-4" => Ok(Self::Gpt4),
"gpt-4-turbo-preview" => Ok(Self::Gpt4Turbo),
"gpt-4o" => Ok(Self::Gpt4Omni),
"gpt-4o-mini" => Ok(Self::Gpt4OmniMini),
"claude-3-5-sonnet" => Ok(Self::Claude3_5Sonnet),
"claude-3-opus" => Ok(Self::Claude3Opus),
"claude-3-sonnet" => Ok(Self::Claude3Sonnet),
"claude-3-haiku" => Ok(Self::Claude3Haiku),
"gemini-1.5-pro" => Ok(Self::Gemini15Pro),
"gemini-1.5-flash" => Ok(Self::Gemini15Flash),
_ => Err(anyhow!("invalid model id")),
}
}
pub fn id(&self) -> &str {
match self {
Self::Gpt3Point5Turbo => "gpt-3.5-turbo",

View File

@ -4,57 +4,3 @@ pub use anthropic::Model as AnthropicModel;
pub use cloud_model::*;
pub use ollama::Model as OllamaModel;
pub use open_ai::Model as OpenAiModel;
use serde::{Deserialize, Serialize};
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq)]
pub enum LanguageModel {
Cloud(CloudModel),
OpenAi(OpenAiModel),
Anthropic(AnthropicModel),
Ollama(OllamaModel),
}
impl Default for LanguageModel {
fn default() -> Self {
LanguageModel::Cloud(CloudModel::default())
}
}
impl LanguageModel {
pub fn telemetry_id(&self) -> String {
match self {
LanguageModel::OpenAi(model) => format!("openai/{}", model.id()),
LanguageModel::Anthropic(model) => format!("anthropic/{}", model.id()),
LanguageModel::Cloud(model) => format!("zed.dev/{}", model.id()),
LanguageModel::Ollama(model) => format!("ollama/{}", model.id()),
}
}
pub fn display_name(&self) -> String {
match self {
LanguageModel::OpenAi(model) => model.display_name().into(),
LanguageModel::Anthropic(model) => model.display_name().into(),
LanguageModel::Cloud(model) => model.display_name().into(),
LanguageModel::Ollama(model) => model.display_name().into(),
}
}
pub fn max_token_count(&self) -> usize {
match self {
LanguageModel::OpenAi(model) => model.max_token_count(),
LanguageModel::Anthropic(model) => model.max_token_count(),
LanguageModel::Cloud(model) => model.max_token_count(),
LanguageModel::Ollama(model) => model.max_token_count(),
}
}
pub fn id(&self) -> &str {
match self {
LanguageModel::OpenAi(model) => model.id(),
LanguageModel::Anthropic(model) => model.id(),
LanguageModel::Cloud(model) => model.id(),
LanguageModel::Ollama(model) => model.id(),
}
}
}

View File

@ -0,0 +1,6 @@
pub mod anthropic;
pub mod cloud;
#[cfg(any(test, feature = "test-support"))]
pub mod fake;
pub mod ollama;
pub mod open_ai;

View File

@ -0,0 +1,454 @@
use anthropic::{stream_completion, Request, RequestMessage};
use anyhow::{anyhow, Result};
use collections::HashMap;
use editor::{Editor, EditorElement, EditorStyle};
use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
use gpui::{
AnyView, AppContext, AsyncAppContext, FontStyle, Subscription, Task, TextStyle, View,
WhiteSpace,
};
use http::HttpClient;
use settings::{Settings, SettingsStore};
use std::{sync::Arc, time::Duration};
use strum::IntoEnumIterator;
use theme::ThemeSettings;
use ui::prelude::*;
use util::ResultExt;
use crate::{
settings::AllLanguageModelSettings, LanguageModel, LanguageModelId, LanguageModelName,
LanguageModelProvider, LanguageModelProviderName, LanguageModelProviderState,
LanguageModelRequest, LanguageModelRequestMessage, Role,
};
const PROVIDER_NAME: &str = "anthropic";
#[derive(Default, Clone, Debug, PartialEq)]
pub struct AnthropicSettings {
pub api_url: String,
pub low_speed_timeout: Option<Duration>,
pub available_models: Vec<anthropic::Model>,
}
pub struct AnthropicLanguageModelProvider {
http_client: Arc<dyn HttpClient>,
state: gpui::Model<State>,
}
struct State {
api_key: Option<String>,
settings: AnthropicSettings,
_subscription: Subscription,
}
impl AnthropicLanguageModelProvider {
pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut AppContext) -> Self {
let state = cx.new_model(|cx| State {
api_key: None,
settings: AnthropicSettings::default(),
_subscription: cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
this.settings = AllLanguageModelSettings::get_global(cx).anthropic.clone();
cx.notify();
}),
});
Self { http_client, state }
}
}
impl LanguageModelProviderState for AnthropicLanguageModelProvider {
fn subscribe<T: 'static>(&self, cx: &mut gpui::ModelContext<T>) -> Option<gpui::Subscription> {
Some(cx.observe(&self.state, |_, _, cx| {
cx.notify();
}))
}
}
impl LanguageModelProvider for AnthropicLanguageModelProvider {
fn name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
let mut models = HashMap::default();
// Add base models from anthropic::Model::iter()
for model in anthropic::Model::iter() {
if !matches!(model, anthropic::Model::Custom { .. }) {
models.insert(model.id().to_string(), model);
}
}
// Override with available models from settings
for model in &self.state.read(cx).settings.available_models {
models.insert(model.id().to_string(), model.clone());
}
models
.into_values()
.map(|model| {
Arc::new(AnthropicModel {
id: LanguageModelId::from(model.id().to_string()),
model,
state: self.state.clone(),
http_client: self.http_client.clone(),
}) as Arc<dyn LanguageModel>
})
.collect()
}
fn is_authenticated(&self, cx: &AppContext) -> bool {
self.state.read(cx).api_key.is_some()
}
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
if self.is_authenticated(cx) {
Task::ready(Ok(()))
} else {
let api_url = self.state.read(cx).settings.api_url.clone();
let state = self.state.clone();
cx.spawn(|mut cx| async move {
let api_key = if let Ok(api_key) = std::env::var("ANTHROPIC_API_KEY") {
api_key
} else {
let (_, api_key) = cx
.update(|cx| cx.read_credentials(&api_url))?
.await?
.ok_or_else(|| anyhow!("credentials not found"))?;
String::from_utf8(api_key)?
};
state.update(&mut cx, |this, cx| {
this.api_key = Some(api_key);
cx.notify();
})
})
}
}
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
cx.new_view(|cx| AuthenticationPrompt::new(self.state.clone(), cx))
.into()
}
fn reset_credentials(&self, cx: &AppContext) -> Task<Result<()>> {
let state = self.state.clone();
let delete_credentials = cx.delete_credentials(&self.state.read(cx).settings.api_url);
cx.spawn(|mut cx| async move {
delete_credentials.await.log_err();
state.update(&mut cx, |this, cx| {
this.api_key = None;
cx.notify();
})
})
}
}
pub struct AnthropicModel {
id: LanguageModelId,
model: anthropic::Model,
state: gpui::Model<State>,
http_client: Arc<dyn HttpClient>,
}
impl AnthropicModel {
fn to_anthropic_request(&self, mut request: LanguageModelRequest) -> Request {
preprocess_anthropic_request(&mut request);
let mut system_message = String::new();
if request
.messages
.first()
.map_or(false, |message| message.role == Role::System)
{
system_message = request.messages.remove(0).content;
}
Request {
model: self.model.clone(),
messages: request
.messages
.iter()
.map(|msg| RequestMessage {
role: match msg.role {
Role::User => anthropic::Role::User,
Role::Assistant => anthropic::Role::Assistant,
Role::System => unreachable!("filtered out by preprocess_request"),
},
content: msg.content.clone(),
})
.collect(),
stream: true,
system: system_message,
max_tokens: 4092,
}
}
}
pub fn count_anthropic_tokens(
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
cx.background_executor()
.spawn(async move {
let messages = request
.messages
.into_iter()
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
role: match message.role {
Role::User => "user".into(),
Role::Assistant => "assistant".into(),
Role::System => "system".into(),
},
content: Some(message.content),
name: None,
function_call: None,
})
.collect::<Vec<_>>();
// Tiktoken doesn't yet support these models, so we manually use the
// same tokenizer as GPT-4.
tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
})
.boxed()
}
impl LanguageModel for AnthropicModel {
fn id(&self) -> LanguageModelId {
self.id.clone()
}
fn name(&self) -> LanguageModelName {
LanguageModelName::from(self.model.display_name().to_string())
}
fn provider_name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn telemetry_id(&self) -> String {
format!("anthropic/{}", self.model.id())
}
fn max_token_count(&self) -> usize {
self.model.max_token_count()
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
count_anthropic_tokens(request, cx)
}
fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AsyncAppContext,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
let request = self.to_anthropic_request(request);
let http_client = self.http_client.clone();
let Ok((api_key, api_url, low_speed_timeout)) = cx.read_model(&self.state, |state, _| {
(
state.api_key.clone(),
state.settings.api_url.clone(),
state.settings.low_speed_timeout,
)
}) else {
return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
};
async move {
let api_key = api_key.ok_or_else(|| anyhow!("missing api key"))?;
let request = stream_completion(
http_client.as_ref(),
&api_url,
&api_key,
request,
low_speed_timeout,
);
let response = request.await?;
let stream = response
.filter_map(|response| async move {
match response {
Ok(response) => match response {
anthropic::ResponseEvent::ContentBlockStart {
content_block, ..
} => match content_block {
anthropic::ContentBlock::Text { text } => Some(Ok(text)),
},
anthropic::ResponseEvent::ContentBlockDelta { delta, .. } => {
match delta {
anthropic::TextDelta::TextDelta { text } => Some(Ok(text)),
}
}
_ => None,
},
Err(error) => Some(Err(error)),
}
})
.boxed();
Ok(stream)
}
.boxed()
}
}
pub fn preprocess_anthropic_request(request: &mut LanguageModelRequest) {
let mut new_messages: Vec<LanguageModelRequestMessage> = Vec::new();
let mut system_message = String::new();
for message in request.messages.drain(..) {
if message.content.is_empty() {
continue;
}
match message.role {
Role::User | Role::Assistant => {
if let Some(last_message) = new_messages.last_mut() {
if last_message.role == message.role {
last_message.content.push_str("\n\n");
last_message.content.push_str(&message.content);
continue;
}
}
new_messages.push(message);
}
Role::System => {
if !system_message.is_empty() {
system_message.push_str("\n\n");
}
system_message.push_str(&message.content);
}
}
}
if !system_message.is_empty() {
new_messages.insert(
0,
LanguageModelRequestMessage {
role: Role::System,
content: system_message,
},
);
}
request.messages = new_messages;
}
struct AuthenticationPrompt {
api_key: View<Editor>,
state: gpui::Model<State>,
}
impl AuthenticationPrompt {
fn new(state: gpui::Model<State>, cx: &mut WindowContext) -> Self {
Self {
api_key: cx.new_view(|cx| {
let mut editor = Editor::single_line(cx);
editor.set_placeholder_text(
"sk-000000000000000000000000000000000000000000000000",
cx,
);
editor
}),
state,
}
}
fn save_api_key(&mut self, _: &menu::Confirm, cx: &mut ViewContext<Self>) {
let api_key = self.api_key.read(cx).text(cx);
if api_key.is_empty() {
return;
}
let write_credentials = cx.write_credentials(
&self.state.read(cx).settings.api_url,
"Bearer",
api_key.as_bytes(),
);
let state = self.state.clone();
cx.spawn(|_, mut cx| async move {
write_credentials.await?;
state.update(&mut cx, |this, cx| {
this.api_key = Some(api_key);
cx.notify();
})
})
.detach_and_log_err(cx);
}
fn render_api_key_editor(&self, cx: &mut ViewContext<Self>) -> impl IntoElement {
let settings = ThemeSettings::get_global(cx);
let text_style = TextStyle {
color: cx.theme().colors().text,
font_family: settings.ui_font.family.clone(),
font_features: settings.ui_font.features.clone(),
font_size: rems(0.875).into(),
font_weight: settings.ui_font.weight,
font_style: FontStyle::Normal,
line_height: relative(1.3),
background_color: None,
underline: None,
strikethrough: None,
white_space: WhiteSpace::Normal,
};
EditorElement::new(
&self.api_key,
EditorStyle {
background: cx.theme().colors().editor_background,
local_player: cx.theme().players().local(),
text: text_style,
..Default::default()
},
)
}
}
impl Render for AuthenticationPrompt {
fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
const INSTRUCTIONS: [&str; 4] = [
"To use the assistant panel or inline assistant, you need to add your Anthropic API key.",
"You can create an API key at: https://console.anthropic.com/settings/keys",
"",
"Paste your Anthropic API key below and hit enter to use the assistant:",
];
v_flex()
.p_4()
.size_full()
.on_action(cx.listener(Self::save_api_key))
.children(
INSTRUCTIONS.map(|instruction| Label::new(instruction).size(LabelSize::Small)),
)
.child(
h_flex()
.w_full()
.my_2()
.px_2()
.py_1()
.bg(cx.theme().colors().editor_background)
.rounded_md()
.child(self.render_api_key_editor(cx)),
)
.child(
Label::new(
"You can also assign the ANTHROPIC_API_KEY environment variable and restart Zed.",
)
.size(LabelSize::Small),
)
.child(
h_flex()
.gap_2()
.child(Label::new("Click on").size(LabelSize::Small))
.child(Icon::new(IconName::ZedAssistant).size(IconSize::XSmall))
.child(
Label::new("in the status bar to close this panel.").size(LabelSize::Small),
),
)
.into_any()
}
}

View File

@ -0,0 +1,287 @@
use super::open_ai::count_open_ai_tokens;
use crate::{
settings::AllLanguageModelSettings, CloudModel, LanguageModel, LanguageModelId,
LanguageModelName, LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
};
use anyhow::Result;
use client::Client;
use collections::HashMap;
use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt, TryFutureExt};
use gpui::{AnyView, AppContext, AsyncAppContext, Subscription, Task};
use settings::{Settings, SettingsStore};
use std::sync::Arc;
use strum::IntoEnumIterator;
use ui::prelude::*;
use crate::LanguageModelProvider;
use super::anthropic::{count_anthropic_tokens, preprocess_anthropic_request};
pub const PROVIDER_NAME: &str = "zed.dev";
#[derive(Default, Clone, Debug, PartialEq)]
pub struct ZedDotDevSettings {
pub available_models: Vec<CloudModel>,
}
pub struct CloudLanguageModelProvider {
client: Arc<Client>,
state: gpui::Model<State>,
_maintain_client_status: Task<()>,
}
struct State {
client: Arc<Client>,
status: client::Status,
settings: ZedDotDevSettings,
_subscription: Subscription,
}
impl State {
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
let client = self.client.clone();
cx.spawn(move |cx| async move { client.authenticate_and_connect(true, &cx).await })
}
}
impl CloudLanguageModelProvider {
pub fn new(client: Arc<Client>, cx: &mut AppContext) -> Self {
let mut status_rx = client.status();
let status = *status_rx.borrow();
let state = cx.new_model(|cx| State {
client: client.clone(),
status,
settings: ZedDotDevSettings::default(),
_subscription: cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
this.settings = AllLanguageModelSettings::get_global(cx).zed_dot_dev.clone();
cx.notify();
}),
});
let state_ref = state.downgrade();
let maintain_client_status = cx.spawn(|mut cx| async move {
while let Some(status) = status_rx.next().await {
if let Some(this) = state_ref.upgrade() {
_ = this.update(&mut cx, |this, cx| {
this.status = status;
cx.notify();
});
} else {
break;
}
}
});
Self {
client,
state,
_maintain_client_status: maintain_client_status,
}
}
}
impl LanguageModelProviderState for CloudLanguageModelProvider {
fn subscribe<T: 'static>(&self, cx: &mut gpui::ModelContext<T>) -> Option<gpui::Subscription> {
Some(cx.observe(&self.state, |_, _, cx| {
cx.notify();
}))
}
}
impl LanguageModelProvider for CloudLanguageModelProvider {
fn name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
let mut models = HashMap::default();
// Add base models from CloudModel::iter()
for model in CloudModel::iter() {
if !matches!(model, CloudModel::Custom { .. }) {
models.insert(model.id().to_string(), model);
}
}
// Override with available models from settings
for model in &self.state.read(cx).settings.available_models {
models.insert(model.id().to_string(), model.clone());
}
models
.into_values()
.map(|model| {
Arc::new(CloudLanguageModel {
id: LanguageModelId::from(model.id().to_string()),
model,
client: self.client.clone(),
}) as Arc<dyn LanguageModel>
})
.collect()
}
fn is_authenticated(&self, cx: &AppContext) -> bool {
self.state.read(cx).status.is_connected()
}
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
self.state.read(cx).authenticate(cx)
}
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
cx.new_view(|_cx| AuthenticationPrompt {
state: self.state.clone(),
})
.into()
}
fn reset_credentials(&self, _cx: &AppContext) -> Task<Result<()>> {
Task::ready(Ok(()))
}
}
pub struct CloudLanguageModel {
id: LanguageModelId,
model: CloudModel,
client: Arc<Client>,
}
impl LanguageModel for CloudLanguageModel {
fn id(&self) -> LanguageModelId {
self.id.clone()
}
fn name(&self) -> LanguageModelName {
LanguageModelName::from(self.model.display_name().to_string())
}
fn provider_name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn telemetry_id(&self) -> String {
format!("zed.dev/{}", self.model.id())
}
fn max_token_count(&self) -> usize {
self.model.max_token_count()
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
match &self.model {
CloudModel::Gpt3Point5Turbo => {
count_open_ai_tokens(request, open_ai::Model::ThreePointFiveTurbo, cx)
}
CloudModel::Gpt4 => count_open_ai_tokens(request, open_ai::Model::Four, cx),
CloudModel::Gpt4Turbo => count_open_ai_tokens(request, open_ai::Model::FourTurbo, cx),
CloudModel::Gpt4Omni => count_open_ai_tokens(request, open_ai::Model::FourOmni, cx),
CloudModel::Gpt4OmniMini => {
count_open_ai_tokens(request, open_ai::Model::FourOmniMini, cx)
}
CloudModel::Claude3_5Sonnet
| CloudModel::Claude3Opus
| CloudModel::Claude3Sonnet
| CloudModel::Claude3Haiku => count_anthropic_tokens(request, cx),
_ => {
let request = self.client.request(proto::CountTokensWithLanguageModel {
model: self.model.id().to_string(),
messages: request
.messages
.iter()
.map(|message| message.to_proto())
.collect(),
});
async move {
let response = request.await?;
Ok(response.token_count as usize)
}
.boxed()
}
}
}
fn stream_completion(
&self,
mut request: LanguageModelRequest,
_: &AsyncAppContext,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
match &self.model {
CloudModel::Claude3Opus
| CloudModel::Claude3Sonnet
| CloudModel::Claude3Haiku
| CloudModel::Claude3_5Sonnet => preprocess_anthropic_request(&mut request),
CloudModel::Custom { name, .. } if name.starts_with("anthropic/") => {
preprocess_anthropic_request(&mut request)
}
_ => {}
}
let request = proto::CompleteWithLanguageModel {
model: self.id.0.to_string(),
messages: request
.messages
.iter()
.map(|message| message.to_proto())
.collect(),
stop: request.stop,
temperature: request.temperature,
tools: Vec::new(),
tool_choice: None,
};
self.client
.request_stream(request)
.map_ok(|stream| {
stream
.filter_map(|response| async move {
match response {
Ok(mut response) => Some(Ok(response.choices.pop()?.delta?.content?)),
Err(error) => Some(Err(error)),
}
})
.boxed()
})
.boxed()
}
}
struct AuthenticationPrompt {
state: gpui::Model<State>,
}
impl Render for AuthenticationPrompt {
fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
const LABEL: &str = "Generate and analyze code with language models. You can dialog with the assistant in this panel or transform code inline.";
v_flex().gap_6().p_4().child(Label::new(LABEL)).child(
v_flex()
.gap_2()
.child(
Button::new("sign_in", "Sign in")
.icon_color(Color::Muted)
.icon(IconName::Github)
.icon_position(IconPosition::Start)
.style(ButtonStyle::Filled)
.full_width()
.on_click(cx.listener(move |this, _, cx| {
this.state.update(cx, |provider, cx| {
provider.authenticate(cx).detach_and_log_err(cx);
cx.notify();
});
})),
)
.child(
div().flex().w_full().items_center().child(
Label::new("Sign in to enable collaboration.")
.color(Color::Muted)
.size(LabelSize::Small),
),
),
)
}
}

View File

@ -0,0 +1,160 @@
use std::sync::{Arc, Mutex};
use collections::HashMap;
use futures::{channel::mpsc, future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
use crate::{
LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
};
use gpui::{AnyView, AppContext, AsyncAppContext, Task};
use http::Result;
use ui::WindowContext;
pub fn language_model_id() -> LanguageModelId {
LanguageModelId::from("fake".to_string())
}
pub fn language_model_name() -> LanguageModelName {
LanguageModelName::from("Fake".to_string())
}
pub fn provider_name() -> LanguageModelProviderName {
LanguageModelProviderName::from("fake".to_string())
}
#[derive(Clone, Default)]
pub struct FakeLanguageModelProvider {
current_completion_txs: Arc<Mutex<HashMap<String, mpsc::UnboundedSender<String>>>>,
}
impl LanguageModelProviderState for FakeLanguageModelProvider {
fn subscribe<T: 'static>(&self, _: &mut gpui::ModelContext<T>) -> Option<gpui::Subscription> {
None
}
}
impl LanguageModelProvider for FakeLanguageModelProvider {
fn name(&self) -> LanguageModelProviderName {
provider_name()
}
fn provided_models(&self, _: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
vec![Arc::new(FakeLanguageModel {
current_completion_txs: self.current_completion_txs.clone(),
})]
}
fn is_authenticated(&self, _: &AppContext) -> bool {
true
}
fn authenticate(&self, _: &AppContext) -> Task<Result<()>> {
Task::ready(Ok(()))
}
fn authentication_prompt(&self, _: &mut WindowContext) -> AnyView {
unimplemented!()
}
fn reset_credentials(&self, _: &AppContext) -> Task<Result<()>> {
Task::ready(Ok(()))
}
}
impl FakeLanguageModelProvider {
pub fn test_model(&self) -> FakeLanguageModel {
FakeLanguageModel {
current_completion_txs: self.current_completion_txs.clone(),
}
}
}
pub struct FakeLanguageModel {
current_completion_txs: Arc<Mutex<HashMap<String, mpsc::UnboundedSender<String>>>>,
}
impl FakeLanguageModel {
pub fn pending_completions(&self) -> Vec<LanguageModelRequest> {
self.current_completion_txs
.lock()
.unwrap()
.keys()
.map(|k| serde_json::from_str(k).unwrap())
.collect()
}
pub fn completion_count(&self) -> usize {
self.current_completion_txs.lock().unwrap().len()
}
pub fn send_completion_chunk(&self, request: &LanguageModelRequest, chunk: String) {
let json = serde_json::to_string(request).unwrap();
self.current_completion_txs
.lock()
.unwrap()
.get(&json)
.unwrap()
.unbounded_send(chunk)
.unwrap();
}
pub fn send_last_completion_chunk(&self, chunk: String) {
self.send_completion_chunk(self.pending_completions().last().unwrap(), chunk);
}
pub fn finish_completion(&self, request: &LanguageModelRequest) {
self.current_completion_txs
.lock()
.unwrap()
.remove(&serde_json::to_string(request).unwrap())
.unwrap();
}
pub fn finish_last_completion(&self) {
self.finish_completion(self.pending_completions().last().unwrap());
}
}
impl LanguageModel for FakeLanguageModel {
fn id(&self) -> LanguageModelId {
language_model_id()
}
fn name(&self) -> LanguageModelName {
language_model_name()
}
fn provider_name(&self) -> LanguageModelProviderName {
provider_name()
}
fn telemetry_id(&self) -> String {
"fake".to_string()
}
fn max_token_count(&self) -> usize {
1000000
}
fn count_tokens(
&self,
_: LanguageModelRequest,
_: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
futures::future::ready(Ok(0)).boxed()
}
fn stream_completion(
&self,
request: LanguageModelRequest,
_: &AsyncAppContext,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
let (tx, rx) = mpsc::unbounded();
self.current_completion_txs
.lock()
.unwrap()
.insert(serde_json::to_string(&request).unwrap(), tx);
async move { Ok(rx.map(Ok).boxed()) }.boxed()
}
}

View File

@ -1,49 +1,148 @@
use crate::LanguageModelCompletionProvider;
use crate::{CompletionProvider, LanguageModel, LanguageModelRequest};
use anyhow::Result;
use futures::StreamExt as _;
use futures::{future::BoxFuture, stream::BoxStream, FutureExt};
use gpui::{AnyView, AppContext, Task};
use anyhow::{anyhow, Result};
use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
use gpui::{AnyView, AppContext, AsyncAppContext, ModelContext, Subscription, Task};
use http::HttpClient;
use language_model::Role;
use ollama::Model as OllamaModel;
use ollama::{
get_models, preload_model, stream_chat_completion, ChatMessage, ChatOptions, ChatRequest,
};
use std::sync::Arc;
use std::time::Duration;
use ollama::{get_models, stream_chat_completion, ChatMessage, ChatOptions, ChatRequest};
use settings::{Settings, SettingsStore};
use std::{sync::Arc, time::Duration};
use ui::{prelude::*, ButtonLike, ElevationIndex};
use crate::{
settings::AllLanguageModelSettings, LanguageModel, LanguageModelId, LanguageModelName,
LanguageModelProvider, LanguageModelProviderName, LanguageModelProviderState,
LanguageModelRequest, Role,
};
const OLLAMA_DOWNLOAD_URL: &str = "https://ollama.com/download";
const OLLAMA_LIBRARY_URL: &str = "https://ollama.com/library";
pub struct OllamaCompletionProvider {
api_url: String,
model: OllamaModel,
http_client: Arc<dyn HttpClient>,
low_speed_timeout: Option<Duration>,
settings_version: usize,
available_models: Vec<OllamaModel>,
const PROVIDER_NAME: &str = "ollama";
#[derive(Default, Debug, Clone, PartialEq)]
pub struct OllamaSettings {
pub api_url: String,
pub low_speed_timeout: Option<Duration>,
}
impl LanguageModelCompletionProvider for OllamaCompletionProvider {
fn available_models(&self) -> Vec<LanguageModel> {
self.available_models
pub struct OllamaLanguageModelProvider {
http_client: Arc<dyn HttpClient>,
state: gpui::Model<State>,
}
struct State {
http_client: Arc<dyn HttpClient>,
available_models: Vec<ollama::Model>,
settings: OllamaSettings,
_subscription: Subscription,
}
impl State {
fn fetch_models(&self, cx: &mut ModelContext<Self>) -> Task<Result<()>> {
let http_client = self.http_client.clone();
let api_url = self.settings.api_url.clone();
// As a proxy for the server being "authenticated", we'll check if its up by fetching the models
cx.spawn(|this, mut cx| async move {
let models = get_models(http_client.as_ref(), &api_url, None).await?;
let mut models: Vec<ollama::Model> = models
.into_iter()
// Since there is no metadata from the Ollama API
// indicating which models are embedding models,
// simply filter out models with "-embed" in their name
.filter(|model| !model.name.contains("-embed"))
.map(|model| ollama::Model::new(&model.name))
.collect();
models.sort_by(|a, b| a.name.cmp(&b.name));
this.update(&mut cx, |this, cx| {
this.available_models = models;
cx.notify();
})
})
}
}
impl OllamaLanguageModelProvider {
pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut AppContext) -> Self {
Self {
http_client: http_client.clone(),
state: cx.new_model(|cx| State {
http_client,
available_models: Default::default(),
settings: OllamaSettings::default(),
_subscription: cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
this.settings = AllLanguageModelSettings::get_global(cx).ollama.clone();
cx.notify();
}),
}),
}
}
fn fetch_models(&self, cx: &AppContext) -> Task<Result<()>> {
let http_client = self.http_client.clone();
let api_url = self.state.read(cx).settings.api_url.clone();
let state = self.state.clone();
// As a proxy for the server being "authenticated", we'll check if its up by fetching the models
cx.spawn(|mut cx| async move {
let models = get_models(http_client.as_ref(), &api_url, None).await?;
let mut models: Vec<ollama::Model> = models
.into_iter()
// Since there is no metadata from the Ollama API
// indicating which models are embedding models,
// simply filter out models with "-embed" in their name
.filter(|model| !model.name.contains("-embed"))
.map(|model| ollama::Model::new(&model.name))
.collect();
models.sort_by(|a, b| a.name.cmp(&b.name));
state.update(&mut cx, |this, cx| {
this.available_models = models;
cx.notify();
})
})
}
}
impl LanguageModelProviderState for OllamaLanguageModelProvider {
fn subscribe<T: 'static>(&self, cx: &mut gpui::ModelContext<T>) -> Option<gpui::Subscription> {
Some(cx.observe(&self.state, |_, _, cx| {
cx.notify();
}))
}
}
impl LanguageModelProvider for OllamaLanguageModelProvider {
fn name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
self.state
.read(cx)
.available_models
.iter()
.map(|m| LanguageModel::Ollama(m.clone()))
.map(|model| {
Arc::new(OllamaLanguageModel {
id: LanguageModelId::from(model.name.clone()),
model: model.clone(),
http_client: self.http_client.clone(),
state: self.state.clone(),
}) as Arc<dyn LanguageModel>
})
.collect()
}
fn settings_version(&self) -> usize {
self.settings_version
}
fn is_authenticated(&self) -> bool {
!self.available_models.is_empty()
fn is_authenticated(&self, cx: &AppContext) -> bool {
!self.state.read(cx).available_models.is_empty()
}
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
if self.is_authenticated() {
if self.is_authenticated(cx) {
Task::ready(Ok(()))
} else {
self.fetch_models(cx)
@ -51,14 +150,9 @@ impl LanguageModelCompletionProvider for OllamaCompletionProvider {
}
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
let state = self.state.clone();
let fetch_models = Box::new(move |cx: &mut WindowContext| {
cx.update_global::<CompletionProvider, _>(|provider, cx| {
provider
.update_current_as::<_, OllamaCompletionProvider>(|provider| {
provider.fetch_models(cx)
})
.unwrap_or_else(|| Task::ready(Ok(())))
})
state.update(cx, |this, cx| this.fetch_models(cx))
});
cx.new_view(|cx| DownloadOllamaMessage::new(fetch_models, cx))
@ -68,9 +162,65 @@ impl LanguageModelCompletionProvider for OllamaCompletionProvider {
fn reset_credentials(&self, cx: &AppContext) -> Task<Result<()>> {
self.fetch_models(cx)
}
}
fn model(&self) -> LanguageModel {
LanguageModel::Ollama(self.model.clone())
pub struct OllamaLanguageModel {
id: LanguageModelId,
model: ollama::Model,
state: gpui::Model<State>,
http_client: Arc<dyn HttpClient>,
}
impl OllamaLanguageModel {
fn to_ollama_request(&self, request: LanguageModelRequest) -> ChatRequest {
ChatRequest {
model: self.model.name.clone(),
messages: request
.messages
.into_iter()
.map(|msg| match msg.role {
Role::User => ChatMessage::User {
content: msg.content,
},
Role::Assistant => ChatMessage::Assistant {
content: msg.content,
},
Role::System => ChatMessage::System {
content: msg.content,
},
})
.collect(),
keep_alive: self.model.keep_alive.clone().unwrap_or_default(),
stream: true,
options: Some(ChatOptions {
num_ctx: Some(self.model.max_tokens),
stop: Some(request.stop),
temperature: Some(request.temperature),
..Default::default()
}),
}
}
}
impl LanguageModel for OllamaLanguageModel {
fn id(&self) -> LanguageModelId {
self.id.clone()
}
fn name(&self) -> LanguageModelName {
LanguageModelName::from(self.model.display_name().to_string())
}
fn max_token_count(&self) -> usize {
self.model.max_token_count()
}
fn telemetry_id(&self) -> String {
format!("ollama/{}", self.model.id())
}
fn provider_name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn count_tokens(
@ -93,12 +243,20 @@ impl LanguageModelCompletionProvider for OllamaCompletionProvider {
fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AsyncAppContext,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
let request = self.to_ollama_request(request);
let http_client = self.http_client.clone();
let api_url = self.api_url.clone();
let low_speed_timeout = self.low_speed_timeout;
let Ok((api_url, low_speed_timeout)) = cx.read_model(&self.state, |state, _| {
(
state.settings.api_url.clone(),
state.settings.low_speed_timeout,
)
}) else {
return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
};
async move {
let request =
stream_chat_completion(http_client.as_ref(), &api_url, request, low_speed_timeout);
@ -122,143 +280,6 @@ impl LanguageModelCompletionProvider for OllamaCompletionProvider {
}
.boxed()
}
fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
self
}
}
impl OllamaCompletionProvider {
pub fn new(
model: OllamaModel,
api_url: String,
http_client: Arc<dyn HttpClient>,
low_speed_timeout: Option<Duration>,
settings_version: usize,
cx: &AppContext,
) -> Self {
cx.spawn({
let api_url = api_url.clone();
let client = http_client.clone();
let model = model.name.clone();
|_| async move {
if model.is_empty() {
return Ok(());
}
preload_model(client.as_ref(), &api_url, &model).await
}
})
.detach_and_log_err(cx);
Self {
api_url,
model,
http_client,
low_speed_timeout,
settings_version,
available_models: Default::default(),
}
}
pub fn update(
&mut self,
model: OllamaModel,
api_url: String,
low_speed_timeout: Option<Duration>,
settings_version: usize,
cx: &AppContext,
) {
cx.spawn({
let api_url = api_url.clone();
let client = self.http_client.clone();
let model = model.name.clone();
|_| async move { preload_model(client.as_ref(), &api_url, &model).await }
})
.detach_and_log_err(cx);
if model.name.is_empty() {
self.select_first_available_model()
} else {
self.model = model;
}
self.api_url = api_url;
self.low_speed_timeout = low_speed_timeout;
self.settings_version = settings_version;
}
pub fn select_first_available_model(&mut self) {
if let Some(model) = self.available_models.first() {
self.model = model.clone();
}
}
pub fn fetch_models(&self, cx: &AppContext) -> Task<Result<()>> {
let http_client = self.http_client.clone();
let api_url = self.api_url.clone();
// As a proxy for the server being "authenticated", we'll check if its up by fetching the models
cx.spawn(|mut cx| async move {
let models = get_models(http_client.as_ref(), &api_url, None).await?;
let mut models: Vec<OllamaModel> = models
.into_iter()
// Since there is no metadata from the Ollama API
// indicating which models are embedding models,
// simply filter out models with "-embed" in their name
.filter(|model| !model.name.contains("-embed"))
.map(|model| OllamaModel::new(&model.name))
.collect();
models.sort_by(|a, b| a.name.cmp(&b.name));
cx.update_global::<CompletionProvider, _>(|provider, _cx| {
provider.update_current_as::<_, OllamaCompletionProvider>(|provider| {
provider.available_models = models;
if !provider.available_models.is_empty() && provider.model.name.is_empty() {
provider.select_first_available_model()
}
});
})
})
}
fn to_ollama_request(&self, request: LanguageModelRequest) -> ChatRequest {
let model = match request.model {
LanguageModel::Ollama(model) => model,
_ => self.model.clone(),
};
ChatRequest {
model: model.name,
messages: request
.messages
.into_iter()
.map(|msg| match msg.role {
Role::User => ChatMessage::User {
content: msg.content,
},
Role::Assistant => ChatMessage::Assistant {
content: msg.content,
},
Role::System => ChatMessage::System {
content: msg.content,
},
})
.collect(),
keep_alive: model.keep_alive.unwrap_or_default(),
stream: true,
options: Some(ChatOptions {
num_ctx: Some(model.max_tokens),
stop: Some(request.stop),
temperature: Some(request.temperature),
..Default::default()
}),
}
}
}
struct DownloadOllamaMessage {

View File

@ -1,72 +1,159 @@
use crate::CompletionProvider;
use crate::LanguageModelCompletionProvider;
use anyhow::{anyhow, Result};
use collections::HashMap;
use editor::{Editor, EditorElement, EditorStyle};
use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
use gpui::{AnyView, AppContext, Task, TextStyle, View};
use futures::{future::BoxFuture, FutureExt, StreamExt};
use gpui::{
AnyView, AppContext, AsyncAppContext, FontStyle, Subscription, Task, TextStyle, View,
WhiteSpace,
};
use http::HttpClient;
use language_model::{CloudModel, LanguageModel, LanguageModelRequest, Role};
use open_ai::Model as OpenAiModel;
use open_ai::{stream_completion, Request, RequestMessage};
use settings::Settings;
use std::time::Duration;
use std::{env, sync::Arc};
use settings::{Settings, SettingsStore};
use std::{sync::Arc, time::Duration};
use strum::IntoEnumIterator;
use theme::ThemeSettings;
use ui::prelude::*;
use util::ResultExt;
pub struct OpenAiCompletionProvider {
api_key: Option<String>,
api_url: String,
model: OpenAiModel,
http_client: Arc<dyn HttpClient>,
low_speed_timeout: Option<Duration>,
settings_version: usize,
available_models_from_settings: Vec<OpenAiModel>,
}
impl OpenAiCompletionProvider {
pub fn new(
model: OpenAiModel,
api_url: String,
http_client: Arc<dyn HttpClient>,
low_speed_timeout: Option<Duration>,
settings_version: usize,
available_models_from_settings: Vec<OpenAiModel>,
) -> Self {
Self {
api_key: None,
api_url,
model,
http_client,
low_speed_timeout,
settings_version,
available_models_from_settings,
}
}
pub fn update(
&mut self,
model: OpenAiModel,
api_url: String,
low_speed_timeout: Option<Duration>,
settings_version: usize,
) {
self.model = model;
self.api_url = api_url;
self.low_speed_timeout = low_speed_timeout;
self.settings_version = settings_version;
}
fn to_open_ai_request(&self, request: LanguageModelRequest) -> Request {
let model = match request.model {
LanguageModel::OpenAi(model) => model,
_ => self.model.clone(),
use crate::{
settings::AllLanguageModelSettings, LanguageModel, LanguageModelId, LanguageModelName,
LanguageModelProvider, LanguageModelProviderName, LanguageModelProviderState,
LanguageModelRequest, Role,
};
Request {
const PROVIDER_NAME: &str = "openai";
#[derive(Default, Clone, Debug, PartialEq)]
pub struct OpenAiSettings {
pub api_url: String,
pub low_speed_timeout: Option<Duration>,
pub available_models: Vec<open_ai::Model>,
}
pub struct OpenAiLanguageModelProvider {
http_client: Arc<dyn HttpClient>,
state: gpui::Model<State>,
}
struct State {
api_key: Option<String>,
settings: OpenAiSettings,
_subscription: Subscription,
}
impl OpenAiLanguageModelProvider {
pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut AppContext) -> Self {
let state = cx.new_model(|cx| State {
api_key: None,
settings: OpenAiSettings::default(),
_subscription: cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
this.settings = AllLanguageModelSettings::get_global(cx).open_ai.clone();
cx.notify();
}),
});
Self { http_client, state }
}
}
impl LanguageModelProviderState for OpenAiLanguageModelProvider {
fn subscribe<T: 'static>(&self, cx: &mut gpui::ModelContext<T>) -> Option<gpui::Subscription> {
Some(cx.observe(&self.state, |_, _, cx| {
cx.notify();
}))
}
}
impl LanguageModelProvider for OpenAiLanguageModelProvider {
fn name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
let mut models = HashMap::default();
// Add base models from open_ai::Model::iter()
for model in open_ai::Model::iter() {
if !matches!(model, open_ai::Model::Custom { .. }) {
models.insert(model.id().to_string(), model);
}
}
// Override with available models from settings
for model in &self.state.read(cx).settings.available_models {
models.insert(model.id().to_string(), model.clone());
}
models
.into_values()
.map(|model| {
Arc::new(OpenAiLanguageModel {
id: LanguageModelId::from(model.id().to_string()),
model,
state: self.state.clone(),
http_client: self.http_client.clone(),
}) as Arc<dyn LanguageModel>
})
.collect()
}
fn is_authenticated(&self, cx: &AppContext) -> bool {
self.state.read(cx).api_key.is_some()
}
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
if self.is_authenticated(cx) {
Task::ready(Ok(()))
} else {
let api_url = self.state.read(cx).settings.api_url.clone();
let state = self.state.clone();
cx.spawn(|mut cx| async move {
let api_key = if let Ok(api_key) = std::env::var("OPENAI_API_KEY") {
api_key
} else {
let (_, api_key) = cx
.update(|cx| cx.read_credentials(&api_url))?
.await?
.ok_or_else(|| anyhow!("credentials not found"))?;
String::from_utf8(api_key)?
};
state.update(&mut cx, |this, cx| {
this.api_key = Some(api_key);
cx.notify();
})
})
}
}
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
cx.new_view(|cx| AuthenticationPrompt::new(self.state.clone(), cx))
.into()
}
fn reset_credentials(&self, cx: &AppContext) -> Task<Result<()>> {
let delete_credentials = cx.delete_credentials(&self.state.read(cx).settings.api_url);
let state = self.state.clone();
cx.spawn(|mut cx| async move {
delete_credentials.await.log_err();
state.update(&mut cx, |this, cx| {
this.api_key = None;
cx.notify();
})
})
}
}
pub struct OpenAiLanguageModel {
id: LanguageModelId,
model: open_ai::Model,
state: gpui::Model<State>,
http_client: Arc<dyn HttpClient>,
}
impl OpenAiLanguageModel {
fn to_open_ai_request(&self, request: LanguageModelRequest) -> Request {
Request {
model: self.model.clone(),
messages: request
.messages
.into_iter()
@ -92,80 +179,25 @@ impl OpenAiCompletionProvider {
}
}
impl LanguageModelCompletionProvider for OpenAiCompletionProvider {
fn available_models(&self) -> Vec<LanguageModel> {
if self.available_models_from_settings.is_empty() {
let available_models = if matches!(self.model, OpenAiModel::Custom { .. }) {
vec![self.model.clone()]
} else {
OpenAiModel::iter()
.filter(|model| !matches!(model, OpenAiModel::Custom { .. }))
.collect()
};
available_models
.into_iter()
.map(LanguageModel::OpenAi)
.collect()
} else {
self.available_models_from_settings
.iter()
.cloned()
.map(LanguageModel::OpenAi)
.collect()
}
impl LanguageModel for OpenAiLanguageModel {
fn id(&self) -> LanguageModelId {
self.id.clone()
}
fn settings_version(&self) -> usize {
self.settings_version
fn name(&self) -> LanguageModelName {
LanguageModelName::from(self.model.display_name().to_string())
}
fn is_authenticated(&self) -> bool {
self.api_key.is_some()
fn provider_name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
if self.is_authenticated() {
Task::ready(Ok(()))
} else {
let api_url = self.api_url.clone();
cx.spawn(|mut cx| async move {
let api_key = if let Ok(api_key) = env::var("OPENAI_API_KEY") {
api_key
} else {
let (_, api_key) = cx
.update(|cx| cx.read_credentials(&api_url))?
.await?
.ok_or_else(|| anyhow!("credentials not found"))?;
String::from_utf8(api_key)?
};
cx.update_global::<CompletionProvider, _>(|provider, _cx| {
provider.update_current_as::<_, Self>(|provider| {
provider.api_key = Some(api_key);
});
})
})
}
fn telemetry_id(&self) -> String {
format!("openai/{}", self.model.id())
}
fn reset_credentials(&self, cx: &AppContext) -> Task<Result<()>> {
let delete_credentials = cx.delete_credentials(&self.api_url);
cx.spawn(|mut cx| async move {
delete_credentials.await.log_err();
cx.update_global::<CompletionProvider, _>(|provider, _cx| {
provider.update_current_as::<_, Self>(|provider| {
provider.api_key = None;
});
})
})
}
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
cx.new_view(|cx| AuthenticationPrompt::new(self.api_url.clone(), cx))
.into()
}
fn model(&self) -> LanguageModel {
LanguageModel::OpenAi(self.model.clone())
fn max_token_count(&self) -> usize {
self.model.max_token_count()
}
fn count_tokens(
@ -173,19 +205,27 @@ impl LanguageModelCompletionProvider for OpenAiCompletionProvider {
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
count_open_ai_tokens(request, cx.background_executor())
count_open_ai_tokens(request, self.model.clone(), cx)
}
fn stream_completion(
&self,
request: LanguageModelRequest,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
cx: &AsyncAppContext,
) -> BoxFuture<'static, Result<futures::stream::BoxStream<'static, Result<String>>>> {
let request = self.to_open_ai_request(request);
let http_client = self.http_client.clone();
let api_key = self.api_key.clone();
let api_url = self.api_url.clone();
let low_speed_timeout = self.low_speed_timeout;
let Ok((api_key, api_url, low_speed_timeout)) = cx.read_model(&self.state, |state, _| {
(
state.api_key.clone(),
state.settings.api_url.clone(),
state.settings.low_speed_timeout,
)
}) else {
return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
};
async move {
let api_key = api_key.ok_or_else(|| anyhow!("missing api key"))?;
let request = stream_completion(
@ -208,17 +248,14 @@ impl LanguageModelCompletionProvider for OpenAiCompletionProvider {
}
.boxed()
}
fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
self
}
}
pub fn count_open_ai_tokens(
request: LanguageModelRequest,
background_executor: &gpui::BackgroundExecutor,
model: open_ai::Model,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
background_executor
cx.background_executor()
.spawn(async move {
let messages = request
.messages
@ -235,19 +272,10 @@ pub fn count_open_ai_tokens(
})
.collect::<Vec<_>>();
match request.model {
LanguageModel::Anthropic(_)
| LanguageModel::Cloud(CloudModel::Claude3_5Sonnet)
| LanguageModel::Cloud(CloudModel::Claude3Opus)
| LanguageModel::Cloud(CloudModel::Claude3Sonnet)
| LanguageModel::Cloud(CloudModel::Claude3Haiku)
| LanguageModel::Cloud(CloudModel::Custom { .. })
| LanguageModel::OpenAi(OpenAiModel::Custom { .. }) => {
// Tiktoken doesn't yet support these models, so we manually use the
// same tokenizer as GPT-4.
if let open_ai::Model::Custom { .. } = model {
tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
}
_ => tiktoken_rs::num_tokens_from_messages(request.model.id(), &messages),
} else {
tiktoken_rs::num_tokens_from_messages(model.id(), &messages)
}
})
.boxed()
@ -255,11 +283,11 @@ pub fn count_open_ai_tokens(
struct AuthenticationPrompt {
api_key: View<Editor>,
api_url: String,
state: gpui::Model<State>,
}
impl AuthenticationPrompt {
fn new(api_url: String, cx: &mut WindowContext) -> Self {
fn new(state: gpui::Model<State>, cx: &mut WindowContext) -> Self {
Self {
api_key: cx.new_view(|cx| {
let mut editor = Editor::single_line(cx);
@ -269,7 +297,7 @@ impl AuthenticationPrompt {
);
editor
}),
api_url,
state,
}
}
@ -279,13 +307,17 @@ impl AuthenticationPrompt {
return;
}
let write_credentials = cx.write_credentials(&self.api_url, "Bearer", api_key.as_bytes());
let write_credentials = cx.write_credentials(
&self.state.read(cx).settings.api_url,
"Bearer",
api_key.as_bytes(),
);
let state = self.state.clone();
cx.spawn(|_, mut cx| async move {
write_credentials.await?;
cx.update_global::<CompletionProvider, _>(|provider, _cx| {
provider.update_current_as::<_, OpenAiCompletionProvider>(|provider| {
provider.api_key = Some(api_key);
});
state.update(&mut cx, |this, cx| {
this.api_key = Some(api_key);
cx.notify();
})
})
.detach_and_log_err(cx);
@ -299,8 +331,12 @@ impl AuthenticationPrompt {
font_features: settings.ui_font.features.clone(),
font_size: rems(0.875).into(),
font_weight: settings.ui_font.weight,
font_style: FontStyle::Normal,
line_height: relative(1.3),
..Default::default()
background_color: None,
underline: None,
strikethrough: None,
white_space: WhiteSpace::Normal,
};
EditorElement::new(
&self.api_key,

View File

@ -0,0 +1,172 @@
use client::Client;
use collections::HashMap;
use gpui::{AppContext, Global, Model, ModelContext};
use std::sync::Arc;
use ui::Context;
use crate::{
provider::{
anthropic::AnthropicLanguageModelProvider, cloud::CloudLanguageModelProvider,
ollama::OllamaLanguageModelProvider, open_ai::OpenAiLanguageModelProvider,
},
LanguageModel, LanguageModelProvider, LanguageModelProviderName, LanguageModelProviderState,
};
pub fn init(client: Arc<Client>, cx: &mut AppContext) {
let registry = cx.new_model(|cx| {
let mut registry = LanguageModelRegistry::default();
register_language_model_providers(&mut registry, client, cx);
registry
});
cx.set_global(GlobalLanguageModelRegistry(registry));
}
fn register_language_model_providers(
registry: &mut LanguageModelRegistry,
client: Arc<Client>,
cx: &mut ModelContext<LanguageModelRegistry>,
) {
use feature_flags::FeatureFlagAppExt;
registry.register_provider(
AnthropicLanguageModelProvider::new(client.http_client(), cx),
cx,
);
registry.register_provider(
OpenAiLanguageModelProvider::new(client.http_client(), cx),
cx,
);
registry.register_provider(
OllamaLanguageModelProvider::new(client.http_client(), cx),
cx,
);
cx.observe_flag::<feature_flags::LanguageModels, _>(move |enabled, cx| {
let client = client.clone();
LanguageModelRegistry::global(cx).update(cx, move |registry, cx| {
if enabled {
registry.register_provider(CloudLanguageModelProvider::new(client.clone(), cx), cx);
} else {
registry.unregister_provider(
&LanguageModelProviderName::from(
crate::provider::cloud::PROVIDER_NAME.to_string(),
),
cx,
);
}
});
})
.detach();
}
struct GlobalLanguageModelRegistry(Model<LanguageModelRegistry>);
impl Global for GlobalLanguageModelRegistry {}
#[derive(Default)]
pub struct LanguageModelRegistry {
providers: HashMap<LanguageModelProviderName, Arc<dyn LanguageModelProvider>>,
}
impl LanguageModelRegistry {
pub fn global(cx: &AppContext) -> Model<Self> {
cx.global::<GlobalLanguageModelRegistry>().0.clone()
}
pub fn read_global(cx: &AppContext) -> &Self {
cx.global::<GlobalLanguageModelRegistry>().0.read(cx)
}
#[cfg(any(test, feature = "test-support"))]
pub fn test(cx: &mut AppContext) -> crate::provider::fake::FakeLanguageModelProvider {
let fake_provider = crate::provider::fake::FakeLanguageModelProvider::default();
let registry = cx.new_model(|cx| {
let mut registry = Self::default();
registry.register_provider(fake_provider.clone(), cx);
registry
});
cx.set_global(GlobalLanguageModelRegistry(registry));
fake_provider
}
pub fn register_provider<T: LanguageModelProvider + LanguageModelProviderState>(
&mut self,
provider: T,
cx: &mut ModelContext<Self>,
) {
let name = provider.name();
if let Some(subscription) = provider.subscribe(cx) {
subscription.detach();
}
self.providers.insert(name, Arc::new(provider));
cx.notify();
}
pub fn unregister_provider(
&mut self,
name: &LanguageModelProviderName,
cx: &mut ModelContext<Self>,
) {
if self.providers.remove(name).is_some() {
cx.notify();
}
}
pub fn providers(
&self,
) -> impl Iterator<Item = (&LanguageModelProviderName, &Arc<dyn LanguageModelProvider>)> {
self.providers.iter()
}
pub fn available_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
self.providers
.values()
.flat_map(|provider| provider.provided_models(cx))
.collect()
}
pub fn available_models_grouped_by_provider(
&self,
cx: &AppContext,
) -> HashMap<LanguageModelProviderName, Vec<Arc<dyn LanguageModel>>> {
self.providers
.iter()
.map(|(name, provider)| (name.clone(), provider.provided_models(cx)))
.collect()
}
pub fn provider(
&self,
name: &LanguageModelProviderName,
) -> Option<Arc<dyn LanguageModelProvider>> {
self.providers.get(name).cloned()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::provider::fake::FakeLanguageModelProvider;
#[gpui::test]
fn test_register_providers(cx: &mut AppContext) {
let registry = cx.new_model(|_| LanguageModelRegistry::default());
registry.update(cx, |registry, cx| {
registry.register_provider(FakeLanguageModelProvider::default(), cx);
});
let providers = registry.read(cx).providers().collect::<Vec<_>>();
assert_eq!(providers.len(), 1);
assert_eq!(providers[0].0, &crate::provider::fake::provider_name());
registry.update(cx, |registry, cx| {
registry.unregister_provider(&crate::provider::fake::provider_name(), cx);
});
let providers = registry.read(cx).providers().collect::<Vec<_>>();
assert!(providers.is_empty());
}
}

View File

@ -1,7 +1,4 @@
use crate::{
model::{CloudModel, LanguageModel},
role::Role,
};
use crate::{role::Role, LanguageModelId};
use serde::{Deserialize, Serialize};
#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
@ -23,16 +20,15 @@ impl LanguageModelRequestMessage {
#[derive(Debug, Default, Serialize, Deserialize)]
pub struct LanguageModelRequest {
pub model: LanguageModel,
pub messages: Vec<LanguageModelRequestMessage>,
pub stop: Vec<String>,
pub temperature: f32,
}
impl LanguageModelRequest {
pub fn to_proto(&self) -> proto::CompleteWithLanguageModel {
pub fn to_proto(&self, model_id: LanguageModelId) -> proto::CompleteWithLanguageModel {
proto::CompleteWithLanguageModel {
model: self.model.id().to_string(),
model: model_id.0.to_string(),
messages: self.messages.iter().map(|m| m.to_proto()).collect(),
stop: self.stop.clone(),
temperature: self.temperature,
@ -40,70 +36,6 @@ impl LanguageModelRequest {
tools: Vec::new(),
}
}
/// Before we send the request to the server, we can perform fixups on it appropriate to the model.
pub fn preprocess(&mut self) {
match &self.model {
LanguageModel::OpenAi(_) => {}
LanguageModel::Anthropic(_) => self.preprocess_anthropic(),
LanguageModel::Ollama(_) => {}
LanguageModel::Cloud(model) => match model {
CloudModel::Claude3Opus
| CloudModel::Claude3Sonnet
| CloudModel::Claude3Haiku
| CloudModel::Claude3_5Sonnet => {
self.preprocess_anthropic();
}
CloudModel::Custom { name, .. } if name.starts_with("anthropic/") => {
self.preprocess_anthropic();
}
_ => {}
},
}
}
pub fn preprocess_anthropic(&mut self) {
let mut new_messages: Vec<LanguageModelRequestMessage> = Vec::new();
let mut system_message = String::new();
for message in self.messages.drain(..) {
if message.content.is_empty() {
continue;
}
match message.role {
Role::User | Role::Assistant => {
if let Some(last_message) = new_messages.last_mut() {
if last_message.role == message.role {
last_message.content.push_str("\n\n");
last_message.content.push_str(&message.content);
continue;
}
}
new_messages.push(message);
}
Role::System => {
if !system_message.is_empty() {
system_message.push_str("\n\n");
}
system_message.push_str(&message.content);
}
}
}
if !system_message.is_empty() {
new_messages.insert(
0,
LanguageModelRequestMessage {
role: Role::System,
content: system_message,
},
);
}
self.messages = new_messages;
}
}
#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]

View File

@ -0,0 +1,143 @@
use std::time::Duration;
use anyhow::Result;
use gpui::AppContext;
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
use settings::{Settings, SettingsSources};
use crate::{
provider::{
anthropic::AnthropicSettings, cloud::ZedDotDevSettings, ollama::OllamaSettings,
open_ai::OpenAiSettings,
},
CloudModel,
};
/// Initializes the language model settings.
pub fn init(cx: &mut AppContext) {
AllLanguageModelSettings::register(cx);
}
#[derive(Default)]
pub struct AllLanguageModelSettings {
pub open_ai: OpenAiSettings,
pub anthropic: AnthropicSettings,
pub ollama: OllamaSettings,
pub zed_dot_dev: ZedDotDevSettings,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct AllLanguageModelSettingsContent {
pub anthropic: Option<AnthropicSettingsContent>,
pub ollama: Option<OllamaSettingsContent>,
pub open_ai: Option<OpenAiSettingsContent>,
#[serde(rename = "zed.dev")]
pub zed_dot_dev: Option<ZedDotDevSettingsContent>,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct AnthropicSettingsContent {
pub api_url: Option<String>,
pub low_speed_timeout_in_seconds: Option<u64>,
pub available_models: Option<Vec<anthropic::Model>>,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct OllamaSettingsContent {
pub api_url: Option<String>,
pub low_speed_timeout_in_seconds: Option<u64>,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct OpenAiSettingsContent {
pub api_url: Option<String>,
pub low_speed_timeout_in_seconds: Option<u64>,
pub available_models: Option<Vec<open_ai::Model>>,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct ZedDotDevSettingsContent {
available_models: Option<Vec<CloudModel>>,
}
impl settings::Settings for AllLanguageModelSettings {
const KEY: Option<&'static str> = Some("language_models");
type FileContent = AllLanguageModelSettingsContent;
fn load(sources: SettingsSources<Self::FileContent>, _: &mut AppContext) -> Result<Self> {
fn merge<T>(target: &mut T, value: Option<T>) {
if let Some(value) = value {
*target = value;
}
}
let mut settings = AllLanguageModelSettings::default();
for value in sources.defaults_and_customizations() {
merge(
&mut settings.anthropic.api_url,
value.anthropic.as_ref().and_then(|s| s.api_url.clone()),
);
if let Some(low_speed_timeout_in_seconds) = value
.anthropic
.as_ref()
.and_then(|s| s.low_speed_timeout_in_seconds)
{
settings.anthropic.low_speed_timeout =
Some(Duration::from_secs(low_speed_timeout_in_seconds));
}
merge(
&mut settings.anthropic.available_models,
value
.anthropic
.as_ref()
.and_then(|s| s.available_models.clone()),
);
merge(
&mut settings.ollama.api_url,
value.ollama.as_ref().and_then(|s| s.api_url.clone()),
);
if let Some(low_speed_timeout_in_seconds) = value
.ollama
.as_ref()
.and_then(|s| s.low_speed_timeout_in_seconds)
{
settings.ollama.low_speed_timeout =
Some(Duration::from_secs(low_speed_timeout_in_seconds));
}
merge(
&mut settings.open_ai.api_url,
value.open_ai.as_ref().and_then(|s| s.api_url.clone()),
);
if let Some(low_speed_timeout_in_seconds) = value
.open_ai
.as_ref()
.and_then(|s| s.low_speed_timeout_in_seconds)
{
settings.open_ai.low_speed_timeout =
Some(Duration::from_secs(low_speed_timeout_in_seconds));
}
merge(
&mut settings.open_ai.available_models,
value
.open_ai
.as_ref()
.and_then(|s| s.available_models.clone()),
);
merge(
&mut settings.zed_dot_dev.available_models,
value
.zed_dot_dev
.as_ref()
.and_then(|s| s.available_models.clone()),
);
}
Ok(settings)
}
}

View File

@ -77,14 +77,14 @@ impl Model {
}
}
pub fn id(&self) -> &'static str {
pub fn id(&self) -> &str {
match self {
Self::ThreePointFiveTurbo => "gpt-3.5-turbo",
Self::Four => "gpt-4",
Self::FourTurbo => "gpt-4-turbo-preview",
Self::FourOmni => "gpt-4o",
Self::FourOmniMini => "gpt-4o-mini",
Self::Custom { .. } => "custom",
Self::Custom { name, .. } => name,
}
}

View File

@ -2785,7 +2785,7 @@ impl Panel for OutlinePanel {
settings::update_settings_file::<OutlinePanelSettings>(
self.fs.clone(),
cx,
move |settings| {
move |settings, _| {
let dock = match position {
DockPosition::Left | DockPosition::Bottom => OutlinePanelDockPosition::Left,
DockPosition::Right => OutlinePanelDockPosition::Right,

View File

@ -2572,7 +2572,7 @@ impl Panel for ProjectPanel {
settings::update_settings_file::<ProjectPanelSettings>(
self.fs.clone(),
cx,
move |settings| {
move |settings, _| {
let dock = match position {
DockPosition::Left | DockPosition::Bottom => ProjectPanelDockPosition::Left,
DockPosition::Right => ProjectPanelDockPosition::Right,

View File

@ -27,7 +27,7 @@ pub struct HeadlessProject {
impl HeadlessProject {
pub fn init(cx: &mut AppContext) {
cx.set_global(SettingsStore::default());
cx.set_global(SettingsStore::new(cx));
WorktreeSettings::register(cx);
}

View File

@ -1263,4 +1263,4 @@ mod tests {
}
// See https://github.com/zed-industries/zed/pull/14823#discussion_r1684616398 for why this is here and when it should be removed.
type _TODO = completion::CompletionProvider;
type _TODO = completion::LanguageModelCompletionProvider;

View File

@ -21,7 +21,7 @@ pub use settings_store::{
pub struct SettingsAssets;
pub fn init(cx: &mut AppContext) {
let mut settings = SettingsStore::default();
let mut settings = SettingsStore::new(cx);
settings
.set_default_settings(&default_settings(), cx)
.unwrap();

View File

@ -1,9 +1,8 @@
use crate::{settings_store::SettingsStore, Settings};
use anyhow::{Context, Result};
use fs::Fs;
use futures::{channel::mpsc, StreamExt};
use gpui::{AppContext, BackgroundExecutor, UpdateGlobal};
use std::{io::ErrorKind, path::PathBuf, sync::Arc, time::Duration};
use gpui::{AppContext, BackgroundExecutor, ReadGlobal, UpdateGlobal};
use std::{path::PathBuf, sync::Arc, time::Duration};
use util::ResultExt;
pub const EMPTY_THEME_NAME: &str = "empty-theme";
@ -91,46 +90,10 @@ pub fn handle_settings_file_changes(
.detach();
}
async fn load_settings(fs: &Arc<dyn Fs>) -> Result<String> {
match fs.load(paths::settings_file()).await {
result @ Ok(_) => result,
Err(err) => {
if let Some(e) = err.downcast_ref::<std::io::Error>() {
if e.kind() == ErrorKind::NotFound {
return Ok(crate::initial_user_settings_content().to_string());
}
}
Err(err)
}
}
}
pub fn update_settings_file<T: Settings>(
fs: Arc<dyn Fs>,
cx: &mut AppContext,
update: impl 'static + Send + FnOnce(&mut T::FileContent),
cx: &AppContext,
update: impl 'static + Send + FnOnce(&mut T::FileContent, &AppContext),
) {
cx.spawn(|cx| async move {
let old_text = load_settings(&fs).await?;
let new_text = cx.read_global(|store: &SettingsStore, _cx| {
store.new_text_for_update::<T>(old_text, update)
})?;
let initial_path = paths::settings_file().as_path();
if fs.is_file(initial_path).await {
let resolved_path = fs.canonicalize(initial_path).await.with_context(|| {
format!("Failed to canonicalize settings path {:?}", initial_path)
})?;
fs.atomic_write(resolved_path.clone(), new_text)
.await
.with_context(|| format!("Failed to write settings to file {:?}", resolved_path))?;
} else {
fs.atomic_write(initial_path.to_path_buf(), new_text)
.await
.with_context(|| format!("Failed to write settings to file {:?}", initial_path))?;
}
anyhow::Ok(())
})
.detach_and_log_err(cx);
SettingsStore::global(cx).update_settings_file::<T>(fs, update);
}

View File

@ -1,6 +1,8 @@
use anyhow::{anyhow, Context, Result};
use collections::{btree_map, hash_map, BTreeMap, HashMap};
use gpui::{AppContext, AsyncAppContext, BorrowAppContext, Global, UpdateGlobal};
use fs::Fs;
use futures::{channel::mpsc, future::LocalBoxFuture, FutureExt, StreamExt};
use gpui::{AppContext, AsyncAppContext, BorrowAppContext, Global, Task, UpdateGlobal};
use lazy_static::lazy_static;
use schemars::{gen::SchemaGenerator, schema::RootSchema, JsonSchema};
use serde::{de::DeserializeOwned, Deserialize as _, Serialize};
@ -161,23 +163,14 @@ pub struct SettingsStore {
TypeId,
Box<dyn Fn(&dyn Any) -> Option<usize> + Send + Sync + 'static>,
)>,
_setting_file_updates: Task<()>,
setting_file_updates_tx: mpsc::UnboundedSender<
Box<dyn FnOnce(AsyncAppContext) -> LocalBoxFuture<'static, Result<()>>>,
>,
}
impl Global for SettingsStore {}
impl Default for SettingsStore {
fn default() -> Self {
SettingsStore {
setting_values: Default::default(),
raw_default_settings: serde_json::json!({}),
raw_user_settings: serde_json::json!({}),
raw_extension_settings: serde_json::json!({}),
raw_local_settings: Default::default(),
tab_size_callback: Default::default(),
}
}
}
#[derive(Debug)]
struct SettingValue<T> {
global_value: Option<T>,
@ -207,6 +200,24 @@ trait AnySettingValue: 'static + Send + Sync {
struct DeserializedSetting(Box<dyn Any>);
impl SettingsStore {
pub fn new(cx: &AppContext) -> Self {
let (setting_file_updates_tx, mut setting_file_updates_rx) = mpsc::unbounded();
Self {
setting_values: Default::default(),
raw_default_settings: serde_json::json!({}),
raw_user_settings: serde_json::json!({}),
raw_extension_settings: serde_json::json!({}),
raw_local_settings: Default::default(),
tab_size_callback: Default::default(),
setting_file_updates_tx,
_setting_file_updates: cx.spawn(|cx| async move {
while let Some(setting_file_update) = setting_file_updates_rx.next().await {
(setting_file_update)(cx.clone()).await.log_err();
}
}),
}
}
pub fn update<C, R>(cx: &mut C, f: impl FnOnce(&mut Self, &mut C) -> R) -> R
where
C: BorrowAppContext,
@ -301,7 +312,7 @@ impl SettingsStore {
#[cfg(any(test, feature = "test-support"))]
pub fn test(cx: &mut AppContext) -> Self {
let mut this = Self::default();
let mut this = Self::new(cx);
this.set_default_settings(&crate::test_settings(), cx)
.unwrap();
this.set_user_settings("{}", cx).unwrap();
@ -323,6 +334,59 @@ impl SettingsStore {
self.set_user_settings(&new_text, cx).unwrap();
}
async fn load_settings(fs: &Arc<dyn Fs>) -> Result<String> {
match fs.load(paths::settings_file()).await {
result @ Ok(_) => result,
Err(err) => {
if let Some(e) = err.downcast_ref::<std::io::Error>() {
if e.kind() == std::io::ErrorKind::NotFound {
return Ok(crate::initial_user_settings_content().to_string());
}
}
Err(err)
}
}
}
pub fn update_settings_file<T: Settings>(
&self,
fs: Arc<dyn Fs>,
update: impl 'static + Send + FnOnce(&mut T::FileContent, &AppContext),
) {
self.setting_file_updates_tx
.unbounded_send(Box::new(move |cx: AsyncAppContext| {
async move {
let old_text = Self::load_settings(&fs).await?;
let new_text = cx.read_global(|store: &SettingsStore, cx| {
store.new_text_for_update::<T>(old_text, |content| update(content, cx))
})?;
let initial_path = paths::settings_file().as_path();
if fs.is_file(initial_path).await {
let resolved_path =
fs.canonicalize(initial_path).await.with_context(|| {
format!("Failed to canonicalize settings path {:?}", initial_path)
})?;
fs.atomic_write(resolved_path.clone(), new_text)
.await
.with_context(|| {
format!("Failed to write settings to file {:?}", resolved_path)
})?;
} else {
fs.atomic_write(initial_path.to_path_buf(), new_text)
.await
.with_context(|| {
format!("Failed to write settings to file {:?}", initial_path)
})?;
}
anyhow::Ok(())
}
.boxed_local()
}))
.ok();
}
/// Updates the value of a setting in a JSON file, returning the new text
/// for that JSON file.
pub fn new_text_for_update<T: Settings>(
@ -1019,7 +1083,7 @@ mod tests {
#[gpui::test]
fn test_settings_store_basic(cx: &mut AppContext) {
let mut store = SettingsStore::default();
let mut store = SettingsStore::new(cx);
store.register_setting::<UserSettings>(cx);
store.register_setting::<TurboSetting>(cx);
store.register_setting::<MultiKeySettings>(cx);
@ -1148,7 +1212,7 @@ mod tests {
#[gpui::test]
fn test_setting_store_assign_json_before_register(cx: &mut AppContext) {
let mut store = SettingsStore::default();
let mut store = SettingsStore::new(cx);
store
.set_default_settings(
r#"{
@ -1191,7 +1255,7 @@ mod tests {
#[gpui::test]
fn test_setting_store_update(cx: &mut AppContext) {
let mut store = SettingsStore::default();
let mut store = SettingsStore::new(cx);
store.register_setting::<MultiKeySettings>(cx);
store.register_setting::<UserSettings>(cx);
store.register_setting::<LanguageSettings>(cx);

View File

@ -760,14 +760,18 @@ impl Panel for TerminalPanel {
}
fn set_position(&mut self, position: DockPosition, cx: &mut ViewContext<Self>) {
settings::update_settings_file::<TerminalSettings>(self.fs.clone(), cx, move |settings| {
settings::update_settings_file::<TerminalSettings>(
self.fs.clone(),
cx,
move |settings, _| {
let dock = match position {
DockPosition::Left => TerminalDockPosition::Left,
DockPosition::Bottom => TerminalDockPosition::Bottom,
DockPosition::Right => TerminalDockPosition::Right,
};
settings.dock = Some(dock);
});
},
);
}
fn size(&self, cx: &WindowContext) -> Pixels {

View File

@ -196,7 +196,7 @@ impl PickerDelegate for ThemeSelectorDelegate {
let appearance = Appearance::from(cx.appearance());
update_settings_file::<ThemeSettings>(self.fs.clone(), cx, move |settings| {
update_settings_file::<ThemeSettings>(self.fs.clone(), cx, move |settings, _| {
if let Some(selection) = settings.theme.as_mut() {
let theme_to_update = match selection {
ThemeSelection::Static(theme) => theme,

View File

@ -147,7 +147,7 @@ fn register(workspace: &mut Workspace, cx: &mut ViewContext<Workspace>) {
workspace.register_action(|workspace: &mut Workspace, _: &ToggleVimMode, cx| {
let fs = workspace.app_state().fs.clone();
let currently_enabled = VimModeSetting::get_global(cx).0;
update_settings_file::<VimModeSetting>(fs, cx, move |setting| {
update_settings_file::<VimModeSetting>(fs, cx, move |setting, _| {
*setting = Some(!currently_enabled)
})
});

View File

@ -176,7 +176,7 @@ impl PickerDelegate for BaseKeymapSelectorDelegate {
self.telemetry
.report_setting_event("keymap", base_keymap.to_string());
update_settings_file::<BaseKeymap>(self.fs.clone(), cx, move |setting| {
update_settings_file::<BaseKeymap>(self.fs.clone(), cx, move |setting, _| {
*setting = Some(base_keymap)
});
}

View File

@ -279,7 +279,7 @@ impl WelcomePage {
if let Some(workspace) = self.workspace.upgrade() {
let fs = workspace.read(cx).app_state().fs.clone();
let selection = *selection;
settings::update_settings_file::<T>(fs, cx, move |settings| {
settings::update_settings_file::<T>(fs, cx, move |settings, _| {
let value = match selection {
Selection::Unselected => false,
Selection::Selected => true,

View File

@ -56,6 +56,7 @@ install_cli.workspace = true
isahc.workspace = true
journal.workspace = true
language.workspace = true
language_model.workspace = true
language_selector.workspace = true
language_tools.workspace = true
languages.workspace = true

View File

@ -164,6 +164,7 @@ fn init_common(app_state: Arc<AppState>, cx: &mut AppContext) {
SystemAppearance::init(cx);
theme::init(theme::LoadThemes::All(Box::new(Assets)), cx);
command_palette::init(cx);
language_model::init(app_state.client.clone(), cx);
snippet_provider::init(cx);
supermaven::init(app_state.client.clone(), cx);
inline_completion_registry::init(app_state.client.telemetry().clone(), cx);

View File

@ -3436,6 +3436,7 @@ mod tests {
project_panel::init((), cx);
outline_panel::init((), cx);
terminal_view::init(cx);
language_model::init(app_state.client.clone(), cx);
assistant::init(app_state.fs.clone(), app_state.client.clone(), cx);
repl::init(app_state.fs.clone(), cx);
tasks_ui::init(cx);