rather than scattered in structures
The context is still hierarchical for defs though, so one needs to retrieve the
path to lookup in the correct context for info. Exceptions are enums and struct
defs, which are re-exposed at toplevel.
This makes sure `catala module` finds the local runtime when run from the catala
source tree; and fixes lookup of the catala exec on custom uses of `clerk runtest`.
... and add a custom printer
Since this is a very common bug, this patch should gain us a lot of time when
debugging uncaught Not_found errors, because the element not found can now be
printed straight away without the need for further debugging.
The small cost is that one should remember to catch the correct specialised
`Foo.Map.Not_found _` exception rather than the standard `Not_found` (which
would type-check but not catch the exception). Using `find_opt` should be
preferred anyway.
Note that the other functions from the module `Map` that raise `Not_found` are
not affected ; these functions are `choose`, `min/max_binding`,
`find_first/last` which either take a predicate or fail on the empty map, so it
wouldn't make sense for them (and we probably don't use them much).
This patch functorises the generic expression printer, in order to be able to
re-use it for end-user printing.
It makes it possible to have an end-user, localised printer that shares the code
for e.g. priority and automatic parens handling.
A generic AST rewriting that disambiguates variables (very simple to write with
bindlib) is also added and used in the OCaml backend for something safer than
just appending `_user` (-- this also handles clashing variables that could be
introduced during compilation which would have generated wrong code before this)
Finally, the `explain` plugin is adapted to use the new printer.
Ah, and `String.format_t` was tweaked to correctly print strings that might
contain unicode without breaking alignment, and should be used instead of
`format_string` or `%s` whenever unicode can be expected.
- Use separate functions for successive passes in module `Driver.Passes`
- Use other functions for end results printing in module `Driver.Commands`
As a consequence, it is much more flexible to use by plugins or libs and we no
longer need the complex polymorphic variant parameter.
This patch leverages previous changes to use Cmdliner subcommands and
effectively specialises the flags of each Catala subcommand.
Other changes include:
- an attempt to normalise the generic options and reduce the number of global
references. Some are ok, like `debug` ; some would better be further cleaned up,
e.g. the ones used by Proof backend were moved to a `Proof.globals` module and
need discussion. The printer no longer relies on the global languages and prints
money amounts in an agnostic way.
- the plugin directory is automatically guessed and loaded even in dev setups.
Plugins are shown by the main `catala` command and listed in `catala --help`
- exception catching at the toplevel has been refactored a bit as well; return
codes are normalised to follow the manpage and avoid codes >= 128 that are
generally reserved for shells.
Update tests
The upside of this is that each command can define specific flags ; there is a
small loss of backwards-compatibility in that the command needs to be the first
argument.
`catala --help` will now only show a summary of commands, with more specific
manpages shown on `catala CMD --help`.
Another point is that the plugin interface is extended to allow plugins to be
registered as subcommands and have their own flags (this will be very useful for
adding flags to the lazy/dot/explanation plugin that has many options).
Note that no efforts has yet been made to specialise the options, the previous
type was just made global for all subcommands.
(first working dynload test with compilation done by manual calls to ocaml)
A few pieces of the puzzle:
* Loading of interfaces only from Catala files
* Registration of toplevel values in modules compiled to OCaml, to allow access
using dynlink
* Shady conversion from OCaml runtime values to/from Catala expressions, to
allow interop (ffi) of compiled modules and the interpreter
Two interdependent changes here:
1. Enforce all instances of Shared_ast.gexpr to use the generic type for marks.
This makes the interfaces a tad simpler to manipulate: you now write
`('a, 'm) gexpr` rather than `('a, 'm mark) gexpr`.
2. Define a polymorphic `Custom` mark case for use by pass-specific annotations.
And leverage this in the typing module
The module is renamed to `Mark`, and functions renamed to avoid redundancy:
`Marked.mark` is now `Mark.add`
`Marked.unmark` is now `Mark.remove`
`Marked.map_under_mark` is now simply `Mark.map`
etc.
`Marked.same_mark_as` is replaced by `Mark.copy`, but with the arguments
swapped (which seemed more convenient throughout)
Since a type `Mark.t` would indicate a mark, and to avoid confusion, the type
`Marked.t` is renamed to `Mark.ed` as a shorthand for `Mark.marked` ; this part
can easily be removed if that's too much quirkiness.
A module without mli is ok as long as it only contains types
Here we already stretch it a bit with some functor applications, but having
toplevel values defeats the expectation that you can safely `open` this module.
- Fix the printer for scopes
- Improve the printer for struct types
- Remove `Print.expr'`. Use `Expr.format` as the function with simplified arguments instead.
- `Print.expr` no longer needs the context
- This removes the need for `expr ~debug` + `expr_debug` ;
use `Print.expr` for normal (non-debug) output,
and `Print.expr' ?debug ()` for possibly debug output.
- This improves consistency of debug expr output in many places
- Prints simplified operators (without type suffix) in non-verbose mode
(this patch also fixes some cases of `Expr.skip_wrappers` and leverages the
binder equality provided by Bindlib)
To try it (without installing Catala):
```shell-session
$ make plugins
$ export CATALA_PLUGINS=_build/default/compiler/plugins
$ dune exec -- catala lazy examples/aides_logement/tests/tests_calcul_apl_locatif.catala_fr -s Exemple2
```
Keep in mind that this is a work-in-progress prototype :)
Fixes#378
- the plugins are compiled as libraries rather than with `executable`, so that
dune is able to install them
- they get installed to `lib/catala/plugins/<plugin-name>/<plugin-name>.cmxs`
- the lookup for plugins is now recursive to cope with the plugin subdirectories
in the point above
This is just a bunch of `sed` calls:
```shell
sed -i 's/ScopeSet/ScopeName.Set/g' compiler/**/*.ml*
sed -i 's/ScopeMap/ScopeName.Map/g' compiler/**/*.ml*
sed -i 's/StructMap/StructName.Map/g' compiler/**/*.ml*
sed -i 's/StructSet/StructName.Set/g' compiler/**/*.ml*
sed -i 's/EnumMap/EnumName.Map/g' compiler/**/*.ml*
sed -i 's/EnumSet/EnumName.Set/g' compiler/**/*.ml*
sed -i 's/StructFieldName/StructField/g' compiler/**/*.ml*
sed -i 's/StructFieldMap/StructField.Map/g' compiler/**/*.ml*
sed -i 's/StructFieldSet/StructField.Set/g' compiler/**/*.ml*
sed -i 's/EnumConstructorMap/EnumConstructor.Map/g' compiler/**/*.ml*
sed -i 's/EnumConstructorSet/EnumConstructor.Set/g' compiler/**/*.ml*
sed -i 's/RuleMap/RuleName.Map/g' compiler/**/*.ml*
sed -i 's/RuleSet/RuleName.Set/g' compiler/**/*.ml*
sed -i 's/LabelMap/LabelName.Map/g' compiler/**/*.ml*
sed -i 's/LabelSet/LabelName.Set/g' compiler/**/*.ml*
sed -i 's/ScopeVarMap/ScopeVar.Map/g' compiler/**/*.ml*
sed -i 's/ScopeVarSet/ScopeVar.Set/g' compiler/**/*.ml*
sed -i 's/SubScopeNameMap/SubScopeName.Map/g' compiler/**/*.ml*
sed -i 's/SubScopeNameSet/SubScopeName.Set/g' compiler/**/*.ml*
```
... and reformat
Many changes got bundled in here and would be too tedious to separate.
Closes#330
See changes in `shared_ast/definitions.ml` to check the main point.
- the biggest change is a modification of the struct and enum types in
expressions: they are now stored as `Map`s throughout passes, and no longer
converted to indexed lists after scopelang. Their accessors are also changed,
and tuples only exist in Lcalc (they're used for closure conversion).
This implied adding some more information in the contexts, to keep the mapping
between struct fields and scope output variables. It should also be much more
robust (no longer relying on assumptions upon different orderings).
- another very pervasive change is more cosmetic: the rewrite of the main AST to
use inline records, labelling individual subfields.
- moved the checks for correct definitions and accesses of structures from
`Scope_to_dcalc` to `Typing`
- defining some new shallow iterators in module `Shared_ast.Expr`, and
factorising a few same-pass rewriting functions accordingly (closure
conversion, optimisations, etc.)
- some smaller style improvements (ensuring we use the proper compare/equal
functions instead of `=` in a few `when` closes, for example)