This is just a bunch of `sed` calls:
```shell
sed -i 's/ScopeSet/ScopeName.Set/g' compiler/**/*.ml*
sed -i 's/ScopeMap/ScopeName.Map/g' compiler/**/*.ml*
sed -i 's/StructMap/StructName.Map/g' compiler/**/*.ml*
sed -i 's/StructSet/StructName.Set/g' compiler/**/*.ml*
sed -i 's/EnumMap/EnumName.Map/g' compiler/**/*.ml*
sed -i 's/EnumSet/EnumName.Set/g' compiler/**/*.ml*
sed -i 's/StructFieldName/StructField/g' compiler/**/*.ml*
sed -i 's/StructFieldMap/StructField.Map/g' compiler/**/*.ml*
sed -i 's/StructFieldSet/StructField.Set/g' compiler/**/*.ml*
sed -i 's/EnumConstructorMap/EnumConstructor.Map/g' compiler/**/*.ml*
sed -i 's/EnumConstructorSet/EnumConstructor.Set/g' compiler/**/*.ml*
sed -i 's/RuleMap/RuleName.Map/g' compiler/**/*.ml*
sed -i 's/RuleSet/RuleName.Set/g' compiler/**/*.ml*
sed -i 's/LabelMap/LabelName.Map/g' compiler/**/*.ml*
sed -i 's/LabelSet/LabelName.Set/g' compiler/**/*.ml*
sed -i 's/ScopeVarMap/ScopeVar.Map/g' compiler/**/*.ml*
sed -i 's/ScopeVarSet/ScopeVar.Set/g' compiler/**/*.ml*
sed -i 's/SubScopeNameMap/SubScopeName.Map/g' compiler/**/*.ml*
sed -i 's/SubScopeNameSet/SubScopeName.Set/g' compiler/**/*.ml*
```
... and reformat
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
Note that this is incomplete in the case of desugared/scopelang because we only
have typing for expressions yet, and the scope/program structure is different.
The code allows passing an environment of types for scope/subscope variables in
order to resolve `ELocation` terms, but that's unused until we implement
scopelang typing at the scope level.
This gives further uniformity in their interfaces and allows more common
handling.
The next step will be for all the `Expr.make_*` functions to work on expressions
annotated with the `'a mark` type, correctly propagating type information when
it is present. Then we could even imagine early propagation of type
information (without complete inference), which could for example be used for
overloaded operator disambiguation.
The AST structures track annotations (e.g., at the moment, source code
position information) in a lot of places. This patch tidies up a bit and
removes some duplication, ensuring a single level of annotation wrapping
at each AST recursion level.
This will be important when adding type information in these
annotations, because there will be consitency constraints to be ensured
and duplication is a likely source of mistakes.
this patch is just a bunch of `sed` commands
```shell
cd compiler
sed -i 's/Pos.marked/Marked.pos/g' *.ml* **/*.ml*
sed -i 's/Pos.unmark/Marked.unmark/g' *.ml* **/*.ml*
sed -i 's/Pos\.get_position/Marked.get_mark/g' *.ml* **/*.ml*
sed -i 's/Pos\.same_pos_as/Marked.same_mark_as/g' *.ml* **/*.ml*
sed -i 's/Pos\.map_under_mark/Marked.map_under_mark/g' *.ml* **/*.ml*
sed -i 's/Pos\.mark/Marked.mark/g' *.ml* **/*.ml*
sed -i 's/Pos\.compare_marked/Marked.compare/g' *.ml* **/*.ml*
```
Adds syntactic comparison for some expressions, etc., allowing in
particular to detect syntactically equal expressions. Positions are,
obviously, ignored.