matches can bind, but switches cannot, so we can assume the switch argument
should always be bound to a name ; this allow the intermediate variable to be
better renamed.
it's not very satisfying, but we make it pass through renaming for now. A better
approach could be to make this special handling structural, or to have something
more specific than an id to hold onto.
in particular, this avoids regression with reused struct fields getting renamed
with indices, which would have required changes in e.g.
`french_law/ocaml/bench.ml`
Previously we had some heuristics in the backends trying to achieve this with a
lot of holes ; this should be much more solid, relying on `Bindlib` to do the
correct renamings.
**Note1**: it's not plugged into the backends other than OCaml at the moment.
**Note2**: the related, obsolete heuristics haven't been cleaned out yet
**Note3**: we conservatively suppose a single namespace at the moment. This is
required for e.g. Python, but it forces vars named like struct fields to be
renamed, which is more verbose in e.g. OCaml. The renaming engine could be
improved to support different namespaces, with a way to select how to route the
different kinds of identifiers into them.
Similarly, customisation for what needs to be uppercase or lowercase is not
available yet.
**Note4**: besides excluding keywords, we should also be careful to exclude (or
namespace):
- the idents used in the runtime (e.g. `o_add_int_int`)
- the dynamically generated idents (e.g. `embed_*`)
**Note5**: module names themselves aren't handled yet. The reason is that they
must be discoverable by the user, and even need to match the filenames, etc. In
other words, imagine that `Mod` is a keyword in the target language. You can't
rename a module called `Mod` to `Mod1` without knowing the whole module context,
because that would destroy the mapping for a module already called `Mod1`.
A reliable solution would be to translate all module names to e.g.
`CatalaModule_*`, which we can assume will never conflict with any built-in, and
forbid idents starting with that prefix. We may also want to restrict their
names to ASCII ? Currently we use a projection, but what if I have two modules
called `Là` and `La` ?
*Disclaimer*: This is intended for discussion
My impression is that the with-exceptions backend is to be superseded by the
without-exception backend, which is more general and more efficient. Therefore,
seeing the added complexity of maintaining the two in parallel, I see no good
reason to keep the with-exceptions version now that the equivalence of their
semantics have been proved.
It will also be nice to reduce divergences between the different backends ; and
this should make further simplifications possible (e.g. some thunkings may no
longer be needed)
Of course I am ready to hear arguments in favor of keeping it, be it in the mid-
or long-term.
This patch removes the `--avoid-exceptions` flag, making it the only option, and
the corresponding `with_exceptions` variant of the dcalc->lcalc translation. It
doesn't do further simplifications.
Support for manipulating toplevel functions as values was buggy, because the
recursion after eta-expansion would fall into the pattern for a `let..in` and
not do the expected transformation.
The patch explicitely builds the closure in that case, avoiding such issues with
recursion.
This is a proper replacement for the previous shell-based placeholder hack.
Here is a summary:
- `clerk runtest` (normally run by ninja) is much extended:
* besides generating the test@out file, it checks individual tests for success
and can write a report file containing their status, and the positions for
their (expected/current) outputs (this uses `Marshal`)
* it now handles out-tests directly in addition to inline-tests, for which
it generates the separate output file ; they are included in the report
- ninja is now tasked with building all the test reports (which shouldn't fail);
for directories, individual reports are concatenated (as before).
Removing intermediate report rules, and out-test rules means that the ninja
file is much simplified.
- then, clerk takes back control, reads the final reports and formats them in a
user-friendly way. Printing the reports may imply running `diff` internally.
In particular, the commands to easily reproduce each test are provided.
Resetting the test results if required is also done directly by clerk, at this
stage.
A few switches are available to customise the output, but I am waiting for some
feedback before deciding what to make available from the CLI.
The `clerk report` command is available to manually explore test reports, but
normally the processing is done directly at the end of `clerk test` (i.e. ninja
will no longer call that command)
NOTE: This is a temporary solution
A future approach could be to have Catala generate a module loader (with the
proper hash), relieving the user implementation from having to do the
registration.
This includes a few separate changes:
- pass visibility information of declarations (depending on wether the
declaration was in a ```catala-metadata block or not)
- add reasonable hash computation functions to discriminate the interfaces. In
particular:
* Uids have a `hash` function that depends on their string, but not on their
actual uid (which is not stable between runs of the compiler) ; the existing
`hash` function and its uses have been renamed to `id`.
* The `Hash` module provides the tools to properly combine hashes, etc. While
we rely on `Hashtbl.hash` for the atoms, we take care not to use it on any
recursive structure (it relies on a bounded traversal).
- insert the hashes in the artefacts, and properly check and report those (for
OCaml)
**Remains to do**:
- Record and check the hashes in the other backends
- Provide a way to get stable inline-test outputs in the presence of module
hashes
- Provide a way to write external modules that don't break at every Catala
update.
This is a first step into unifying trace handling. This patch only affects the
interpreter, by delegating trace recording to the already existing runtime
functions.
At end of interpretation, it recovers the registered trace from the runtime, and
prints it.
NOTE: there are some limitations due to this approach, as runtime values going
through this interface have to be converted to the "runtime embedded" type. In
particular, functions can no longer be printed (which makes full sense if we
want it to happen in the same way in compiled code) ; some information, like
types, is lost, but it didn't appear to be used.
Also, a specific printer had to be added for runtime values (but it's very
simple so that shouldn't be a problem).
@denismerigoux I'd like your input on how well this goes for your use-cases.
Further work should probably be cleanup and unification of the runtime logging
interfaces ; there is already code for re-structuring the traces, printing to
JSON, etc. which could be common to runtime and interpreter.
mostly reverting to the ones the interpreter was printing ; for the case of
divisions, we choose to point to the denominator instead of the operator as it's
where the only possible error (division by zero) comes from.
Positions within the Default terms are specially important since they can come
from separate definitions in the source (before this, we would be falling back
to the single declaration).
- Clearly distinguish Exceptions from Errors. The only catchable exception
available in our AST is `EmptyError`, so the corresponding nodes are made less
generic, and a node `FatalError` is added
- Runtime errors are defined as a specific type in the OCaml runtime, with a
carrier exception and printing functions. These are used throughout, and
consistently by the interpreter. They always carry a position, that can be
converted to be printed with the fancy compiler location printer, or in a
simpler way from the backends.
- All operators that might be subject to an error take a position as argument,
in order to print an informative message without relying on backtraces from
the backend
As discussed in #549
NOTE: This implements only the direct tuple member access (syntax `foo.N` with N a
number)
- It seems more efficient to wait for the general pattern-matching rewrite to
handle pattern-matching on tuples
- Until then we keep the (now obsolete) `let (x, y) = pair in x` syntax, to
leave time for updates, but we won't be documenting it
Closes#592
A new node is added in `desugared`, and translated into an exploded structure
literal during translation to `scopelang`. The main reason to put it there is
that it needs to be after disambiguation, since that is used to discover the
type of the structure that is being updated.