NOTE: This is a temporary solution
A future approach could be to have Catala generate a module loader (with the
proper hash), relieving the user implementation from having to do the
registration.
This includes a few separate changes:
- pass visibility information of declarations (depending on wether the
declaration was in a ```catala-metadata block or not)
- add reasonable hash computation functions to discriminate the interfaces. In
particular:
* Uids have a `hash` function that depends on their string, but not on their
actual uid (which is not stable between runs of the compiler) ; the existing
`hash` function and its uses have been renamed to `id`.
* The `Hash` module provides the tools to properly combine hashes, etc. While
we rely on `Hashtbl.hash` for the atoms, we take care not to use it on any
recursive structure (it relies on a bounded traversal).
- insert the hashes in the artefacts, and properly check and report those (for
OCaml)
**Remains to do**:
- Record and check the hashes in the other backends
- Provide a way to get stable inline-test outputs in the presence of module
hashes
- Provide a way to write external modules that don't break at every Catala
update.
This is a first step into unifying trace handling. This patch only affects the
interpreter, by delegating trace recording to the already existing runtime
functions.
At end of interpretation, it recovers the registered trace from the runtime, and
prints it.
NOTE: there are some limitations due to this approach, as runtime values going
through this interface have to be converted to the "runtime embedded" type. In
particular, functions can no longer be printed (which makes full sense if we
want it to happen in the same way in compiled code) ; some information, like
types, is lost, but it didn't appear to be used.
Also, a specific printer had to be added for runtime values (but it's very
simple so that shouldn't be a problem).
@denismerigoux I'd like your input on how well this goes for your use-cases.
Further work should probably be cleanup and unification of the runtime logging
interfaces ; there is already code for re-structuring the traces, printing to
JSON, etc. which could be common to runtime and interpreter.
mostly reverting to the ones the interpreter was printing ; for the case of
divisions, we choose to point to the denominator instead of the operator as it's
where the only possible error (division by zero) comes from.
Positions within the Default terms are specially important since they can come
from separate definitions in the source (before this, we would be falling back
to the single declaration).
- Clearly distinguish Exceptions from Errors. The only catchable exception
available in our AST is `EmptyError`, so the corresponding nodes are made less
generic, and a node `FatalError` is added
- Runtime errors are defined as a specific type in the OCaml runtime, with a
carrier exception and printing functions. These are used throughout, and
consistently by the interpreter. They always carry a position, that can be
converted to be printed with the fancy compiler location printer, or in a
simpler way from the backends.
- All operators that might be subject to an error take a position as argument,
in order to print an informative message without relying on backtraces from
the backend
As discussed in #549
NOTE: This implements only the direct tuple member access (syntax `foo.N` with N a
number)
- It seems more efficient to wait for the general pattern-matching rewrite to
handle pattern-matching on tuples
- Until then we keep the (now obsolete) `let (x, y) = pair in x` syntax, to
leave time for updates, but we won't be documenting it
Closes#592
A new node is added in `desugared`, and translated into an exploded structure
literal during translation to `scopelang`. The main reason to put it there is
that it needs to be after disambiguation, since that is used to discover the
type of the structure that is being updated.
Ensuring messages don't print overlong lines still requires some manual work:
- if they don't contain any `Format` directives (`%` or `@`), use `"%a"
Format.pp_print_text` to turn word-wrapping on.
- otherwise replace spaces with `@ ` to mark possible cutting points, as soon
that it's possible the line will get over 80 chars (most often, this means
starting before the first `%a`)
Thanks @denismerigoux
This renames the "ScopeDef" variant from `SubScope` to `SubScopeInput`, which is
much clearer and avoids confusion with the `SubScope` elements in the surface
AST (which are really subscopes and not variables at this point).
And improves some error message by specialising depending on whether we are
dealing with a subscope or an explicit structure.
Lots of tests have a new warning because they were calling subscopes without
using their outputs. A better solution could be to mark these subscopes as
`output`, now that it's possible !
Through the syntax `var_name state state_name`.
Addresses #567, but
- requires documentation
- explicitely accessing states of the variable being defined is not allowed at
the moment (warning proposed in #567 requires a whole-expression check, which
is better done some place else entirely)
The primary use-case for this was to be able to run computations on a list of
structures, then return an updated list with some fields in the structures
modified : that is what we need for distribution of tax amounts among household
members, for example.
This patch has a few components:
- Addition of a test as an example for tax distributions
- Added a transformation, performed during desugaring, that -- where lists are
syntactically expected, i.e. after the `among` keyword -- turns a (syntactic)
tuple of lists into a list of tuples ("zipping" the lists)
- Arg-extremum transformation was also fixed to use an intermediate list instead
of computing the predicate twice
- For convenience, allow to bind multiple variables in most* list
operations (previously only `let in` and functions allowed it)
- Fixed the printer for tuples to differentiate them from lists
*Note: tuples are not yet allowed on the left-hand side of filters and
arg-extremums for annoying syntax conflict reasons.