catala/compiler/dcalc/from_scopelang.ml
Louis Gesbert b9156bb60e Implement safe renaming of idents for backend printing
Previously we had some heuristics in the backends trying to achieve this with a
lot of holes ; this should be much more solid, relying on `Bindlib` to do the
correct renamings.

**Note1**: it's not plugged into the backends other than OCaml at the moment.

**Note2**: the related, obsolete heuristics haven't been cleaned out yet

**Note3**: we conservatively suppose a single namespace at the moment. This is
required for e.g. Python, but it forces vars named like struct fields to be
renamed, which is more verbose in e.g. OCaml. The renaming engine could be
improved to support different namespaces, with a way to select how to route the
different kinds of identifiers into them.

Similarly, customisation for what needs to be uppercase or lowercase is not
available yet.

**Note4**: besides excluding keywords, we should also be careful to exclude (or
namespace):
- the idents used in the runtime (e.g. `o_add_int_int`)
- the dynamically generated idents (e.g. `embed_*`)

**Note5**: module names themselves aren't handled yet. The reason is that they
must be discoverable by the user, and even need to match the filenames, etc. In
other words, imagine that `Mod` is a keyword in the target language. You can't
rename a module called `Mod` to `Mod1` without knowing the whole module context,
because that would destroy the mapping for a module already called `Mod1`.

A reliable solution would be to translate all module names to e.g.
`CatalaModule_*`, which we can assume will never conflict with any built-in, and
forbid idents starting with that prefix. We may also want to restrict their
names to ASCII ? Currently we use a projection, but what if I have two modules
called `Là` and `La` ?
2024-08-28 17:18:26 +02:00

991 lines
37 KiB
OCaml

(* This file is part of the Catala compiler, a specification language for tax
and social benefits computation rules. Copyright (C) 2020 Inria, contributor:
Denis Merigoux <denis.merigoux@inria.fr>
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License. *)
open Catala_utils
open Shared_ast
module S = Scopelang.Ast
type scope_var_ctx = {
scope_var_name : ScopeVar.t;
scope_var_typ : naked_typ;
scope_var_io : Desugared.Ast.io;
}
type scope_input_var_ctx = {
scope_input_name : StructField.t;
scope_input_io : Runtime.io_input Mark.pos;
scope_input_typ : naked_typ;
scope_input_thunked : bool;
(* For reentrant variables: if true, the type t of the field has been
changed to (unit -> t). Otherwise, the type was already a function and
wasn't changed so no additional wrapping will be needed *)
}
type 'm scope_ref =
| Local_scope_ref of 'm Ast.expr Var.t
| External_scope_ref of ScopeName.t Mark.pos
type 'm scope_sig_ctx = {
scope_sig_local_vars : scope_var_ctx list; (** List of scope variables *)
scope_sig_scope_ref : 'm scope_ref;
(** Var or external representing the scope *)
scope_sig_input_struct : StructName.t; (** Scope input *)
scope_sig_output_struct : StructName.t; (** Scope output *)
scope_sig_in_fields : scope_input_var_ctx ScopeVar.Map.t;
(** Mapping between the input scope variables and the input struct fields. *)
}
type 'm ctx = {
decl_ctx : decl_ctx;
scope_name : ScopeName.t option;
scopes_parameters : 'm scope_sig_ctx ScopeName.Map.t;
toplevel_vars : ('m Ast.expr Var.t * naked_typ) TopdefName.Map.t;
scope_vars :
('m Ast.expr Var.t * naked_typ * Desugared.Ast.io) ScopeVar.Map.t;
date_rounding : date_rounding;
}
let mark_tany m pos = Expr.with_ty m (Mark.add pos TAny) ~pos
(* Expression argument is used as a type witness, its type and positions aren't
used *)
let pos_mark_mk (type a m) (e : (a, m) gexpr) :
(Pos.t -> m mark) * ((_, Pos.t) Mark.ed -> m mark) =
let pos_mark pos =
Expr.map_mark (fun _ -> pos) (fun _ -> TAny, pos) (Mark.get e)
in
let pos_mark_as e = pos_mark (Mark.get e) in
pos_mark, pos_mark_as
let merge_defaults
~(is_func : bool)
(caller : (dcalc, 'm) boxed_gexpr)
(callee : (dcalc, 'm) boxed_gexpr) : (dcalc, 'm) boxed_gexpr =
(* the merging of the two defaults, from the reentrant caller and the callee,
is straightfoward in the general case and a little subtler when the
variable being defined is a function. *)
if is_func then
let m_callee = Mark.get callee in
let unboxed_callee = Expr.unbox callee in
match Mark.remove unboxed_callee with
| EAbs { binder; tys } ->
let vars, body = Bindlib.unmbind binder in
let m_body = Mark.get body in
let caller =
let m = Mark.get caller in
let pos = Expr.mark_pos m in
Expr.make_app caller
(List.map2
(fun (var : (dcalc, 'm) naked_gexpr Bindlib.var) ty ->
Expr.evar var
(* we have to correctly propagate types when doing this
rewriting *)
(Expr.with_ty m_body ~pos:(Expr.mark_pos m_body) ty))
(Array.to_list vars) tys)
tys pos
in
let ltrue =
Expr.elit (LBool true)
(Expr.with_ty m_callee
(Mark.add (Expr.mark_pos m_callee) (TLit TBool)))
in
let cons = Expr.make_puredefault (Expr.rebox body) in
let d =
Expr.edefault ~excepts:[caller] ~just:ltrue ~cons (Mark.get cons)
in
Expr.make_abs vars (Expr.make_erroronempty d) tys (Expr.mark_pos m_callee)
| _ -> assert false
(* should not happen because there should always be a lambda at the
beginning of a default with a function type *)
else
let caller =
let m = Mark.get caller in
let pos = Expr.mark_pos m in
Expr.make_app caller
[Expr.elit LUnit (Expr.with_ty m (Mark.add pos (TLit TUnit)))]
[TLit TUnit, pos]
pos
in
let body =
let m = Mark.get callee in
let ltrue =
Expr.elit (LBool true)
(Expr.with_ty m (Mark.add (Expr.mark_pos m) (TLit TBool)))
in
let cons = Expr.make_puredefault callee in
Expr.make_erroronempty
(Expr.edefault ~excepts:[caller] ~just:ltrue ~cons (Mark.get cons))
in
body
let tag_with_log_entry
(e : 'm Ast.expr boxed)
(l : log_entry)
(markings : Uid.MarkedString.info list) : 'm Ast.expr boxed =
let m = mark_tany (Mark.get e) (Expr.pos e) in
if Global.options.trace then
let pos = Expr.pos e in
Expr.eappop ~op:(Log (l, markings), pos) ~tys:[TAny, pos] ~args:[e] m
else e
(* In a list of exceptions, it is normally an error if more than a single one
apply at the same time. This relaxes this constraint slightly, allowing a
conflict if all the triggered conflicting exception yield syntactically equal
results (and as long as none of these exceptions have exceptions themselves)
NOTE: the choice of the exception that will be triggered and show in the
trace is arbitrary (but deterministic). *)
let collapse_similar_outcomes (type m) (excepts : m S.expr list) : m S.expr list
=
let module ExprMap = Map.Make (struct
type t = m S.expr
let compare = Expr.compare
let format = Expr.format
end) in
let cons_map =
List.fold_left
(fun map -> function
| (EDefault { excepts = []; cons; _ }, _) as e ->
ExprMap.update cons
(fun prev -> Some (e :: Option.value ~default:[] prev))
map
| _ -> map)
ExprMap.empty excepts
in
let _, excepts =
List.fold_right
(fun e (cons_map, excepts) ->
match e with
| EDefault { excepts = []; cons; _ }, _ ->
let collapsed_exc =
List.fold_left
(fun acc -> function
| EDefault { excepts = []; just; cons }, pos ->
[EDefault { excepts = acc; just; cons }, pos]
| _ -> assert false)
[]
(ExprMap.find cons cons_map)
in
ExprMap.add cons [] cons_map, collapsed_exc @ excepts
| e -> cons_map, e :: excepts)
excepts (cons_map, [])
in
excepts
let input_var_needs_thunking typ io_in =
(* For "context" (or reentrant) variables, we thunk them as [(fun () -> e)] so
that we can put them in default terms at the initialisation of the function
body, allowing an empty error to recover the default value. *)
match Mark.remove io_in.Desugared.Ast.io_input, typ with
| Runtime.Reentrant, TArrow _ ->
false (* we don't need to thunk expressions that are already functions *)
| Runtime.Reentrant, _ -> true
| _ -> false
let input_var_typ typ io_in =
let pos = Mark.get io_in.Desugared.Ast.io_input in
if input_var_needs_thunking typ io_in then
TArrow ([TLit TUnit, pos], (typ, pos)), pos
else typ, pos
let thunk_scope_arg var_ctx e =
match var_ctx.scope_input_io, var_ctx.scope_input_thunked with
| (Runtime.NoInput, _), _ -> invalid_arg "thunk_scope_arg"
| (Runtime.OnlyInput, _), false -> e
| (Runtime.Reentrant, _), false -> e
| (Runtime.Reentrant, pos), true ->
Expr.make_abs [| Var.make "_" |] e [TLit TUnit, pos] pos
| _ -> assert false
let rec translate_expr (ctx : 'm ctx) (e : 'm S.expr) : 'm Ast.expr boxed =
let m = Mark.get e in
match Mark.remove e with
| EMatch { e = e1; name; cases = e_cases } ->
let enum_sig = EnumName.Map.find name ctx.decl_ctx.ctx_enums in
let d_cases, remaining_e_cases =
(* FIXME: these checks should probably be moved to a better place *)
EnumConstructor.Map.fold
(fun constructor _ (d_cases, e_cases) ->
let case_e =
try EnumConstructor.Map.find constructor e_cases
with EnumConstructor.Map.Not_found _ ->
Message.error ~pos:(Expr.pos e)
"The constructor %a of enum %a is missing from this pattern \
matching"
EnumConstructor.format constructor EnumName.format name
in
let case_d = translate_expr ctx case_e in
( EnumConstructor.Map.add constructor case_d d_cases,
EnumConstructor.Map.remove constructor e_cases ))
enum_sig
(EnumConstructor.Map.empty, e_cases)
in
if not (EnumConstructor.Map.is_empty remaining_e_cases) then
Message.error ~pos:(Expr.pos e)
"Pattern matching is incomplete for enum %a: missing cases %a"
EnumName.format name
(EnumConstructor.Map.format_keys ~pp_sep:(fun fmt () ->
Format.fprintf fmt ", "))
remaining_e_cases;
let e1 = translate_expr ctx e1 in
Expr.ematch ~e:e1 ~name ~cases:d_cases m
| EScopeCall { scope; args } ->
let pos = Expr.mark_pos m in
let sc_sig = ScopeName.Map.find scope ctx.scopes_parameters in
let in_var_map =
ScopeVar.Map.merge
(fun var_name (str_field : scope_input_var_ctx option) expr ->
match str_field, expr with
| None, None -> assert false
| Some ({ scope_input_io = Reentrant, iopos; _ } as var_ctx), None ->
let ty0 =
match var_ctx.scope_input_typ with
| TArrow ([_], ty) -> ty
| _ -> assert false
(* reentrant field must be thunked with correct function type at
this point *)
in
Some
( var_ctx.scope_input_name,
Expr.make_abs
[| Var.make "_" |]
(Expr.eempty (Expr.with_ty m ty0))
[TAny, iopos]
pos )
| Some var_ctx, Some e ->
Some
( var_ctx.scope_input_name,
thunk_scope_arg var_ctx (translate_expr ctx e) )
| Some var_ctx, None ->
Message.error ~pos
~extra_pos:
[
( "Declaration of the missing input variable",
Mark.get (StructField.get_info var_ctx.scope_input_name) );
]
"Definition of input variable '%a' missing in this scope call"
ScopeVar.format var_name
| None, Some e ->
Message.error
~suggestion:
(List.map
(fun v -> Mark.remove (ScopeVar.get_info v))
(ScopeVar.Map.keys sc_sig.scope_sig_in_fields))
~fmt_pos:
[
ignore, Expr.pos e;
( (fun ppf ->
Format.fprintf ppf "Declaration of scope %a"
ScopeName.format scope),
Mark.get (ScopeName.get_info scope) );
]
"Unknown input variable '%a' in scope call of '%a'"
ScopeVar.format var_name ScopeName.format scope)
sc_sig.scope_sig_in_fields args
in
let field_map =
ScopeVar.Map.fold
(fun _ (fld, e) acc -> StructField.Map.add fld e acc)
in_var_map StructField.Map.empty
in
let arg_struct =
Expr.estruct ~name:sc_sig.scope_sig_input_struct ~fields:field_map
(mark_tany m pos)
in
let called_func =
let m = mark_tany m pos in
let e =
match sc_sig.scope_sig_scope_ref with
| Local_scope_ref v -> Expr.evar v m
| External_scope_ref name ->
Expr.eexternal ~name:(Mark.map (fun s -> External_scope s) name) m
in
tag_with_log_entry e BeginCall
[ScopeName.get_info scope; Mark.add (Expr.pos e) "direct"]
in
let single_arg =
tag_with_log_entry arg_struct
(VarDef
{
log_typ = TStruct sc_sig.scope_sig_input_struct;
log_io_output = false;
log_io_input = OnlyInput;
})
[
ScopeName.get_info scope;
Mark.add (Expr.pos e) "direct";
Mark.add (Expr.pos e) "input";
]
in
let direct_output_info =
[
ScopeName.get_info scope;
Mark.add (Expr.pos e) "direct";
Mark.add (Expr.pos e) "output";
]
in
(* calling_expr = scope_function scope_input_struct *)
let calling_expr =
Expr.eapp ~f:called_func ~args:[single_arg]
~tys:[TStruct sc_sig.scope_sig_input_struct, pos]
m
in
(* For the purposes of log parsing explained in Runtime.EventParser, we need
to wrap this function call in a flurry of log tags. Specifically, we are
mascarading this scope call as a function call. In a normal function
call, the log parser expects the output of the function to be defined as
a default, hence the production of the output should yield a
PosRecordIfTrueBool (which is not the case here). To remedy this absence
we fabricate a fake PosRecordIfTrueBool attached to a silent let binding
to "true" before returning the output value.
But this is not sufficient. Indeed for the tricky case of
[tests/test_scope/scope_call3.catala_en], when a scope returns a
function, because we insert loggins calls at the call site of the
function and not during its definition, then we're missing the call log
instructions of the function returned. To avoid this trap, we need to
rebind the resulting scope output struct by eta-expanding the functions
to insert logging instructions. *)
let result_var = Var.make "result" in
let result_eta_expanded_var = Var.make "result" in
(* result_eta_expanded = { struct_output_function_field = lambda x -> log
(struct_output.struct_output_function_field x) ... } *)
let result_eta_expanded =
Expr.estruct ~name:sc_sig.scope_sig_output_struct
~fields:
(StructField.Map.mapi
(fun field typ ->
let original_field_expr =
Expr.estructaccess
~e:
(Expr.make_var result_var
(Expr.with_ty m
(TStruct sc_sig.scope_sig_output_struct, Expr.pos e)))
~field ~name:sc_sig.scope_sig_output_struct
(Expr.with_ty m typ)
in
match Mark.remove typ with
| TArrow (ts_in, t_out) ->
(* Here the output scope struct field is a function so we
eta-expand it and insert logging instructions. Invariant:
works because there is no partial evaluation. *)
let params_vars =
ListLabels.mapi ts_in ~f:(fun i _ ->
Var.make ("param" ^ string_of_int i))
in
let f_markings =
[ScopeName.get_info scope; StructField.get_info field]
in
let args =
List.mapi
(fun i (param_var, t_in) ->
tag_with_log_entry
(Expr.make_var param_var (Expr.with_ty m t_in))
(VarDef
{
log_typ = Mark.remove t_in;
log_io_output = false;
log_io_input = OnlyInput;
})
(f_markings
@ [Mark.add (Expr.pos e) ("input" ^ string_of_int i)]))
(List.combine params_vars ts_in)
in
Expr.make_abs
(Array.of_list params_vars)
(tag_with_log_entry
(tag_with_log_entry
(Expr.eapp
~f:
(tag_with_log_entry original_field_expr BeginCall
f_markings)
~args ~tys:ts_in (Expr.with_ty m t_out))
(VarDef
{
log_typ = Mark.remove t_out;
log_io_output = true;
log_io_input = NoInput;
})
(f_markings @ [Mark.add (Expr.pos e) "output"]))
EndCall f_markings)
ts_in (Expr.pos e)
| _ -> original_field_expr)
(StructName.Map.find sc_sig.scope_sig_output_struct
ctx.decl_ctx.ctx_structs))
(Expr.with_ty m (TStruct sc_sig.scope_sig_output_struct, Expr.pos e))
in
(* Here we have to go through an if statement that records a decision being
taken with a log. We can't just do a let-in with the true boolean value
enclosed in the log because it might get optimized by a compiler later
down the chain. *)
(* if_then_else_returned = if log true then result_eta_expanded else
result_eta_expanded *)
let if_then_else_returned =
Expr.eifthenelse
(tag_with_log_entry
(Expr.box
(Mark.add
(Expr.with_ty m (TLit TBool, Expr.pos e))
(ELit (LBool true))))
PosRecordIfTrueBool direct_output_info)
(Expr.make_var result_eta_expanded_var
(Expr.with_ty m (TStruct sc_sig.scope_sig_output_struct, Expr.pos e)))
(Expr.make_var result_eta_expanded_var
(Expr.with_ty m (TStruct sc_sig.scope_sig_output_struct, Expr.pos e)))
(Expr.with_ty m (TStruct sc_sig.scope_sig_output_struct, Expr.pos e))
in
(* let result_var = calling_expr in let result_eta_expanded_var =
result_eta_expaneded in log (if_then_else_returned ) *)
Expr.make_let_in result_var
(TStruct sc_sig.scope_sig_output_struct, Expr.pos e)
calling_expr
(Expr.make_let_in result_eta_expanded_var
(TStruct sc_sig.scope_sig_output_struct, Expr.pos e)
result_eta_expanded
(tag_with_log_entry
(tag_with_log_entry if_then_else_returned
(VarDef
{
log_typ = TStruct sc_sig.scope_sig_output_struct;
log_io_output = true;
log_io_input = NoInput;
})
direct_output_info)
EndCall
[ScopeName.get_info scope; Mark.add (Expr.pos e) "direct"])
(Expr.pos e))
(Expr.pos e)
| EApp { f; args; tys } ->
(* We insert various log calls to record arguments and outputs of
user-defined functions belonging to scopes *)
let e1_func = translate_expr ctx f in
let markings =
match ctx.scope_name, Mark.remove f with
| Some sname, ELocation loc -> (
match loc with
| ScopelangScopeVar { name = v, _; _ } ->
[ScopeName.get_info sname; ScopeVar.get_info v]
| ToplevelVar _ -> [])
| _ -> []
in
let e1_func =
match markings with
| [] -> e1_func
| m -> tag_with_log_entry e1_func BeginCall m
in
let new_args = List.map (translate_expr ctx) args in
let input_typs = List.map Mark.remove tys in
let output_typ =
(* NOTE: this is a temporary solution, it works because it's assumed that
all function have explicit types. However, this will change -- for more
information see
https://github.com/CatalaLang/catala/pull/280#discussion_r898851693. *)
let retrieve_out_typ_or_any var vars =
let _, typ, _ = ScopeVar.Map.find (Mark.remove var) vars in
match typ with
| TArrow (_, marked_output_typ) -> Mark.remove marked_output_typ
| _ -> TAny
in
match Mark.remove f with
| ELocation (ScopelangScopeVar { name = var }) ->
retrieve_out_typ_or_any var ctx.scope_vars
| ELocation (ToplevelVar { name }) -> (
let typ =
TopdefName.Map.find (Mark.remove name) ctx.decl_ctx.ctx_topdefs
in
match Mark.remove typ with
| TArrow (_, (tout, _)) -> tout
| _ ->
Message.error ~pos:(Expr.pos e)
"Application of non-function toplevel variable")
| _ -> TAny
in
(* Message.debug "new_args %d, input_typs: %d, input_typs %a" (List.length
new_args) (List.length input_typs) (Format.pp_print_list Print.typ_debug)
(List.map (Mark.add Pos.no_pos) input_typs); *)
let new_args =
ListLabels.mapi (List.combine new_args input_typs)
~f:(fun i (new_arg, input_typ) ->
match markings with
| _ :: _ as m ->
tag_with_log_entry new_arg
(VarDef
{
log_typ = input_typ;
log_io_output = false;
log_io_input = OnlyInput;
})
(m @ [Mark.add (Expr.pos e) ("input" ^ string_of_int i)])
| _ -> new_arg)
in
let new_e = Expr.eapp ~f:e1_func ~args:new_args ~tys m in
let new_e =
match markings with
| [] -> new_e
| m ->
tag_with_log_entry
(tag_with_log_entry new_e
(VarDef
{
log_typ = output_typ;
log_io_output = true;
log_io_input = NoInput;
})
(m @ [Mark.add (Expr.pos e) "output"]))
EndCall m
in
new_e
| EDefault { excepts; just; cons } ->
let excepts = collapse_similar_outcomes excepts in
Expr.edefault
~excepts:(List.map (translate_expr ctx) excepts)
~just:(translate_expr ctx just) ~cons:(translate_expr ctx cons) m
| EPureDefault e -> Expr.epuredefault (translate_expr ctx e) m
| ELocation (ScopelangScopeVar { name = a }) ->
let v, _, _ = ScopeVar.Map.find (Mark.remove a) ctx.scope_vars in
Expr.evar v m
| ELocation (ToplevelVar { name }) ->
let path = TopdefName.path (Mark.remove name) in
if path = [] then
let v, _ = TopdefName.Map.find (Mark.remove name) ctx.toplevel_vars in
Expr.evar v m
else Expr.eexternal ~name:(Mark.map (fun n -> External_value n) name) m
| EAppOp { op = Add_dat_dur _, opos; args; tys } ->
let args = List.map (translate_expr ctx) args in
Expr.eappop ~op:(Add_dat_dur ctx.date_rounding, opos) ~args ~tys m
| ( EVar _ | EAbs _ | ELit _ | EStruct _ | EStructAccess _ | ETuple _
| ETupleAccess _ | EInj _ | EFatalError _ | EEmpty | EErrorOnEmpty _
| EArray _ | EIfThenElse _ | EAppOp _ ) as e ->
Expr.map ~f:(translate_expr ctx) ~op:Operator.translate (e, m)
(** The result of a rule translation is a list of assignments, with variables
and expressions. We also return the new translation context available after
the assignment to use in later rule translations. The list is actually a
continuation yielding a [Dcalc.scope_body_expr] by giving it what should
come later in the chain of let-bindings. *)
let translate_rule
(ctx : 'm ctx)
(rule : 'm S.rule)
((sigma_name, pos_sigma) : Uid.MarkedString.info) :
('m Ast.expr scope_body_expr Bindlib.box ->
'm Ast.expr scope_body_expr Bindlib.box)
* 'm ctx =
match rule with
| S.ScopeVarDefinition { var; typ; e; _ }
| S.SubScopeVarDefinition { var; typ; e; _ } ->
let scope_var = Mark.remove var in
let decl_pos = Mark.get (ScopeVar.get_info scope_var) in
let pos_mark, _ = pos_mark_mk e in
let scope_let_kind, io =
match rule with
| S.ScopeVarDefinition { io; _ } -> ScopeVarDefinition, io
| S.SubScopeVarDefinition _ ->
( SubScopeVarDefinition,
{ io_input = NoInput, decl_pos; io_output = false, decl_pos } )
| S.Assertion _ -> assert false
in
let a_name = ScopeVar.get_info (Mark.remove var) in
let a_var = Var.make (Mark.remove a_name) in
let new_e = translate_expr ctx e in
let a_expr = Expr.make_var a_var (pos_mark decl_pos) in
let is_func = match Mark.remove typ with TArrow _ -> true | _ -> false in
let merged_expr =
match Mark.remove io.io_input with
| OnlyInput -> assert false
(* scopelang should not contain any definitions of input only variables *)
| Reentrant -> merge_defaults ~is_func a_expr new_e
| NoInput -> new_e
in
let merged_expr =
tag_with_log_entry merged_expr
(VarDef
{
log_typ = Mark.remove typ;
log_io_output = Mark.remove io.io_output;
log_io_input = Mark.remove io.io_input;
})
[sigma_name, pos_sigma; a_name]
in
( (fun next ->
Bindlib.box_apply2
(fun next merged_expr ->
Cons
( {
scope_let_typ = typ;
scope_let_expr = merged_expr;
scope_let_kind;
scope_let_pos = decl_pos;
},
next ))
(Bindlib.bind_var a_var next)
(Expr.Box.lift merged_expr)),
{
ctx with
scope_vars =
ScopeVar.Map.add (Mark.remove var)
(a_var, Mark.remove typ, io)
ctx.scope_vars;
} )
| Assertion e ->
let new_e = translate_expr ctx e in
let scope_let_pos = Expr.pos e in
let scope_let_typ = TLit TUnit, scope_let_pos in
( (fun next ->
Bindlib.box_apply2
(fun next new_e ->
Cons
( {
scope_let_pos;
scope_let_typ;
scope_let_expr =
Mark.add
(Expr.map_ty (fun _ -> scope_let_typ) (Mark.get e))
(EAssert new_e);
scope_let_kind = Assertion;
},
next ))
(Bindlib.bind_var (Var.make "_") next)
(Expr.Box.lift new_e)),
ctx )
let translate_rules
(ctx : 'm ctx)
(scope_name : ScopeName.t)
(rules : 'm S.rule list)
((sigma_name, pos_sigma) : Uid.MarkedString.info)
(mark : 'm mark)
(scope_sig : 'm scope_sig_ctx) :
'm Ast.expr scope_body_expr Bindlib.box * 'm ctx =
let scope_lets, new_ctx =
List.fold_left
(fun (scope_lets, ctx) rule ->
let new_scope_lets, new_ctx =
translate_rule ctx rule (sigma_name, pos_sigma)
in
(fun next -> scope_lets (new_scope_lets next)), new_ctx)
((fun next -> next), ctx)
rules
in
let scope_sig_decl = ScopeName.Map.find scope_name ctx.decl_ctx.ctx_scopes in
let return_exp =
Expr.estruct ~name:scope_sig.scope_sig_output_struct
~fields:
(ScopeVar.Map.fold
(fun var (dcalc_var, _, io) acc ->
if Mark.remove io.Desugared.Ast.io_output then
let field =
ScopeVar.Map.find var scope_sig_decl.out_struct_fields
in
StructField.Map.add field
(Expr.make_var dcalc_var (mark_tany mark pos_sigma))
acc
else acc)
new_ctx.scope_vars StructField.Map.empty)
(mark_tany mark pos_sigma)
in
( scope_lets
(Bindlib.box_apply
(fun return_exp -> Last return_exp)
(Expr.Box.lift return_exp)),
new_ctx )
(* From a scope declaration and definitions, create the corresponding scope body
wrapped in the appropriate call convention. *)
let translate_scope_decl
(ctx : 'm ctx)
(scope_name : ScopeName.t)
(sigma : 'm S.scope_decl) =
let sigma_info = ScopeName.get_info sigma.scope_decl_name in
let scope_sig =
ScopeName.Map.find sigma.scope_decl_name ctx.scopes_parameters
in
let scope_variables = scope_sig.scope_sig_local_vars in
let ctx = { ctx with scope_name = Some scope_name } in
let ctx =
(* the context must be initialized for fresh variables for all only-input
scope variables *)
List.fold_left
(fun ctx scope_var ->
match Mark.remove scope_var.scope_var_io.io_input with
| OnlyInput ->
let scope_var_name = ScopeVar.get_info scope_var.scope_var_name in
let scope_var_dcalc = Var.make (Mark.remove scope_var_name) in
{
ctx with
scope_vars =
ScopeVar.Map.add scope_var.scope_var_name
( scope_var_dcalc,
scope_var.scope_var_typ,
scope_var.scope_var_io )
ctx.scope_vars;
}
| _ -> ctx)
ctx scope_variables
in
let date_rounding : date_rounding =
match
List.find_opt
(function Desugared.Ast.DateRounding _, _ -> true)
sigma.scope_options
with
| Some (Desugared.Ast.DateRounding Desugared.Ast.Increasing, _) -> RoundUp
| Some (DateRounding Decreasing, _) -> RoundDown
| None -> AbortOnRound
in
let ctx = { ctx with date_rounding } in
let scope_input_var =
Var.make (Mark.remove (ScopeName.get_info scope_name) ^ "_in")
in
let scope_input_struct_name = scope_sig.scope_sig_input_struct in
let scope_return_struct_name = scope_sig.scope_sig_output_struct in
let pos_sigma = Mark.get sigma_info in
let scope_mark =
(* Find a witness of a mark in the definitions *)
match sigma.scope_decl_rules with
| [] ->
(* Todo: are we sure this can't happen in normal code ? E.g. is calling a
scope which only defines input variables already an error at this stage
or not ? *)
Message.error ~pos:pos_sigma "Scope %a has no content" ScopeName.format
scope_name
| ( S.ScopeVarDefinition { e; _ }
| S.SubScopeVarDefinition { e; _ }
| S.Assertion e )
:: _ ->
Mark.get e
in
let rules_with_return_expr, ctx =
translate_rules ctx scope_name sigma.scope_decl_rules sigma_info scope_mark
scope_sig
in
let scope_variables =
List.map
(fun var_ctx ->
let dcalc_x, _, _ =
ScopeVar.Map.find var_ctx.scope_var_name ctx.scope_vars
in
var_ctx, dcalc_x)
scope_variables
in
(* first we create variables from the fields of the input struct *)
let scope_input_variables =
List.filter
(fun (var_ctx, _) ->
match Mark.remove var_ctx.scope_var_io.io_input with
| NoInput -> false
| _ -> true)
scope_variables
in
let input_destructurings next =
List.fold_right
(fun (var_ctx, v) next ->
let field =
(ScopeVar.Map.find var_ctx.scope_var_name
scope_sig.scope_sig_in_fields)
.scope_input_name
in
Bindlib.box_apply2
(fun next r ->
Cons
( {
scope_let_kind = DestructuringInputStruct;
scope_let_pos = pos_sigma;
scope_let_typ =
input_var_typ var_ctx.scope_var_typ var_ctx.scope_var_io;
scope_let_expr =
( EStructAccess
{ name = scope_input_struct_name; e = r; field },
mark_tany scope_mark pos_sigma );
},
next ))
(Bindlib.bind_var v next)
(Expr.Box.lift
(Expr.make_var scope_input_var (mark_tany scope_mark pos_sigma))))
scope_input_variables next
in
Bindlib.box_apply
(fun scope_body_expr ->
{
scope_body_expr;
scope_body_input_struct = scope_input_struct_name;
scope_body_output_struct = scope_return_struct_name;
})
(Bindlib.bind_var scope_input_var
(input_destructurings rules_with_return_expr))
let translate_program (prgm : 'm S.program) : 'm Ast.program =
let defs_dependencies = Scopelang.Dependency.build_program_dep_graph prgm in
Scopelang.Dependency.check_for_cycle_in_defs defs_dependencies;
let defs_ordering =
Scopelang.Dependency.get_defs_ordering defs_dependencies
in
let decl_ctx = prgm.program_ctx in
let scopes_parameters : 'm scope_sig_ctx ScopeName.Map.t =
let process_scope_sig decl_ctx scope_name scope =
let scope_path = ScopeName.path scope_name in
let scope_ref =
if scope_path = [] then
let v = Var.make (Mark.remove (ScopeName.get_info scope_name)) in
Local_scope_ref v
else
External_scope_ref
(Mark.copy (ScopeName.get_info scope_name) scope_name)
in
let scope_info = ScopeName.Map.find scope_name decl_ctx.ctx_scopes in
let scope_sig_in_fields =
(* Output fields have already been generated and added to the program
ctx at this point, because they are visible to the user (manipulated
as the return type of ScopeCalls) ; but input fields are used purely
internally and need to be created here to implement the call
convention for scopes. *)
let module S = S in
ScopeVar.Map.filter_map
(fun dvar svar ->
match Mark.remove svar.S.svar_io.Desugared.Ast.io_input with
| NoInput -> None
| OnlyInput | Reentrant ->
let info = ScopeVar.get_info dvar in
let s = Mark.remove info ^ "_in" in
Some
{
scope_input_name = StructField.fresh (s, Mark.get info);
scope_input_io = svar.S.svar_io.Desugared.Ast.io_input;
scope_input_typ =
Mark.remove
(input_var_typ
(Mark.remove svar.S.svar_in_ty)
svar.S.svar_io);
scope_input_thunked =
input_var_needs_thunking
(Mark.remove svar.S.svar_in_ty)
svar.S.svar_io;
})
scope.S.scope_sig
in
{
scope_sig_local_vars =
List.map
(fun (scope_var, svar) ->
{
scope_var_name = scope_var;
scope_var_typ = Mark.remove svar.S.svar_in_ty;
scope_var_io = svar.S.svar_io;
})
(ScopeVar.Map.bindings scope.scope_sig);
scope_sig_scope_ref = scope_ref;
scope_sig_input_struct = scope_info.in_struct_name;
scope_sig_output_struct = scope_info.out_struct_name;
scope_sig_in_fields;
}
in
let process_scopes scopes =
ScopeName.Map.mapi
(fun scope_name (scope_decl, _) ->
process_scope_sig decl_ctx scope_name scope_decl)
scopes
in
ModuleName.Map.fold
(fun _ s -> ScopeName.Map.disjoint_union (process_scopes s))
prgm.S.program_modules
(process_scopes prgm.S.program_scopes)
in
let ctx_structs =
ScopeName.Map.fold
(fun _ scope_sig_ctx acc ->
let fields =
ScopeVar.Map.fold
(fun _ sivc acc ->
let pos = Mark.get (StructField.get_info sivc.scope_input_name) in
StructField.Map.add sivc.scope_input_name
(sivc.scope_input_typ, pos)
acc)
scope_sig_ctx.scope_sig_in_fields StructField.Map.empty
in
StructName.Map.add scope_sig_ctx.scope_sig_input_struct fields acc)
scopes_parameters decl_ctx.ctx_structs
in
let decl_ctx = { decl_ctx with ctx_structs } in
let toplevel_vars =
TopdefName.Map.mapi
(fun name (_, ty) ->
Var.make (Mark.remove (TopdefName.get_info name)), Mark.remove ty)
prgm.S.program_topdefs
in
let ctx =
{
decl_ctx;
scope_name = None;
scopes_parameters;
scope_vars = ScopeVar.Map.empty;
(* subscope_vars = ScopeVar.Map.empty; *)
toplevel_vars;
date_rounding = AbortOnRound;
}
in
(* the resulting expression is the list of definitions of all the scopes,
ending with the top-level scope. The decl_ctx is filled in left-to-right
order, then the chained scopes aggregated from the right. *)
let rec translate_defs vlist = function
| [] ->
Bindlib.box_apply
(fun vl -> Last vl)
(Bindlib.box_rev_list (List.map Bindlib.box_var vlist))
| def :: next ->
let dvar, def =
match def with
| Scopelang.Dependency.Topdef gname ->
let expr, ty = TopdefName.Map.find gname prgm.program_topdefs in
let expr = translate_expr ctx expr in
( fst (TopdefName.Map.find gname ctx.toplevel_vars),
Bindlib.box_apply
(fun e -> Topdef (gname, ty, e))
(Expr.Box.lift expr) )
| Scopelang.Dependency.Scope scope_name ->
let scope = ScopeName.Map.find scope_name prgm.program_scopes in
let scope_body =
translate_scope_decl ctx scope_name (Mark.remove scope)
in
let scope_var =
match
(ScopeName.Map.find scope_name scopes_parameters)
.scope_sig_scope_ref
with
| Local_scope_ref v -> v
| External_scope_ref _ -> assert false
in
( scope_var,
Bindlib.box_apply
(fun body -> ScopeDef (scope_name, body))
scope_body )
in
let scope_next = translate_defs (dvar :: vlist) next in
let next_bind = Bindlib.bind_var dvar scope_next in
Bindlib.box_apply2
(fun item next_bind -> Cons (item, next_bind))
def next_bind
in
let items = translate_defs [] defs_ordering in
Expr.Box.assert_closed items;
{
code_items = Bindlib.unbox items;
decl_ctx;
module_name = prgm.S.program_module_name;
lang = prgm.program_lang;
}