cryptol/sbv/Data/SBV/SMT/SMTLib2.hs

499 lines
27 KiB
Haskell
Raw Normal View History

2014-04-18 02:34:25 +04:00
----------------------------------------------------------------------------
-- |
-- Module : Data.SBV.SMT.SMTLib2
-- Copyright : (c) Levent Erkok
-- License : BSD3
-- Maintainer : erkokl@gmail.com
-- Stability : experimental
--
-- Conversion of symbolic programs to SMTLib format, Using v2 of the standard
-----------------------------------------------------------------------------
{-# LANGUAGE PatternGuards #-}
module Data.SBV.SMT.SMTLib2(cvt, addNonEqConstraints) where
import Data.Bits (bit)
import Data.Char (intToDigit)
import Data.Function (on)
import Data.Ord (comparing)
2014-04-18 02:34:25 +04:00
import qualified Data.Foldable as F (toList)
import qualified Data.Map as M
import qualified Data.IntMap as IM
import qualified Data.Set as Set
import Data.List (intercalate, partition, groupBy, sortBy)
2014-04-18 02:34:25 +04:00
import Numeric (showIntAtBase, showHex)
import Data.SBV.BitVectors.AlgReals
import Data.SBV.BitVectors.Data
import Data.SBV.BitVectors.PrettyNum (showSMTFloat, showSMTDouble, smtRoundingMode)
-- | Add constraints to generate /new/ models. This function is used to query the SMT-solver, while
-- disallowing a previous model.
addNonEqConstraints :: RoundingMode -> [(Quantifier, NamedSymVar)] -> [[(String, CW)]] -> SMTLibPgm -> Maybe String
addNonEqConstraints rm qinps allNonEqConstraints (SMTLibPgm _ (aliasTable, pre, post))
| null allNonEqConstraints
= Just $ intercalate "\n" $ pre ++ post
| null refutedModel
= Nothing
| True
= Just $ intercalate "\n" $ pre
++ [ "; --- refuted-models ---" ]
++ refutedModel
2014-04-18 02:34:25 +04:00
++ post
where refutedModel = concatMap (nonEqs rm) (map (map intName) nonEqConstraints)
intName (s, c)
| Just sw <- s `lookup` aliasTable = (show sw, c)
| True = (s, c)
-- with existentials, we only add top-level existentials to the refuted-models list
nonEqConstraints = filter (not . null) $ map (filter (\(s, _) -> s `elem` topUnivs)) allNonEqConstraints
topUnivs = [s | (_, (_, s)) <- takeWhile (\p -> fst p == EX) qinps]
nonEqs :: RoundingMode -> [(String, CW)] -> [String]
nonEqs rm scs = format $ interp ps ++ disallow (map eqClass uninterpClasses)
where (ups, ps) = partition (isUninterpreted . snd) scs
format [] = []
format [m] = ["(assert " ++ m ++ ")"]
format (m:ms) = ["(assert (or " ++ m]
++ map (" " ++) ms
++ [" ))"]
-- Regular (or interpreted) sorts simply get a constraint that we disallow the current assignment
interp = map $ nonEq rm
-- Determine the equivalnce classes of uninterpreted sorts:
uninterpClasses = filter (\l -> length l > 1) -- Only need this class if it has at least two members
. map (map fst) -- throw away sorts, we only need the names
. groupBy ((==) `on` snd) -- make sure they belong to the same sort and have the same value
. sortBy (comparing snd) -- sort them according to their sorts first
$ ups -- take the uninterpreted sorts
-- Uninterpreted sorts get a constraint that says the equivalence classes as determined by the solver are disallowed:
eqClass :: [String] -> String
eqClass [] = error "SBV.allSat.nonEqs: Impossible happened, disallow received an empty list"
eqClass cs = "(= " ++ unwords cs ++ ")"
-- Now, take the conjunction of equivalence classes and assert it's negation:
disallow = map $ \ec -> "(not " ++ ec ++ ")"
2014-04-18 02:34:25 +04:00
nonEq :: RoundingMode -> (String, CW) -> String
nonEq rm (s, c) = "(not (= " ++ s ++ " " ++ cvtCW rm c ++ "))"
tbd :: String -> a
tbd e = error $ "SBV.SMTLib2: Not-yet-supported: " ++ e
-- | Translate a problem into an SMTLib2 script
cvt :: RoundingMode -- ^ User selected rounding mode to be used for floating point arithmetic
-> Maybe Logic -- ^ SMT-Lib logic, if requested by the user
2014-04-18 02:34:25 +04:00
-> SolverCapabilities -- ^ capabilities of the current solver
-> Set.Set Kind -- ^ kinds used
-> Bool -- ^ is this a sat problem?
-> [String] -- ^ extra comments to place on top
-> [(Quantifier, NamedSymVar)] -- ^ inputs
-> [Either SW (SW, [SW])] -- ^ skolemized version inputs
-> [(SW, CW)] -- ^ constants
-> [((Int, Kind, Kind), [SW])] -- ^ auto-generated tables
-> [(Int, ArrayInfo)] -- ^ user specified arrays
-> [(String, SBVType)] -- ^ uninterpreted functions/constants
-> [(String, [String])] -- ^ user given axioms
-> SBVPgm -- ^ assignments
-> [SW] -- ^ extra constraints
-> SW -- ^ output variable
-> ([String], [String])
cvt rm smtLogic solverCaps kindInfo isSat comments inputs skolemInps consts tbls arrs uis axs (SBVPgm asgnsSeq) cstrs out = (pre, [])
2014-04-18 02:34:25 +04:00
where -- the logic is an over-approaximation
hasInteger = KUnbounded `Set.member` kindInfo
hasReal = KReal `Set.member` kindInfo
hasFloat = KFloat `Set.member` kindInfo
hasDouble = KDouble `Set.member` kindInfo
hasBVs = not $ null [() | KBounded{} <- Set.toList kindInfo]
sorts = [s | KUninterpreted s <- Set.toList kindInfo]
logic
| Just l <- smtLogic
= ["(set-logic " ++ show l ++ ") ; NB. User specified."]
2014-04-18 02:34:25 +04:00
| hasDouble || hasFloat -- NB. We don't check for quantifiers here, we probably should..
= if hasBVs
then ["(set-logic QF_FPABV)"]
else ["(set-logic QF_FPA)"]
| hasInteger || hasReal || not (null sorts)
= case mbDefaultLogic solverCaps of
Nothing -> ["; Has unbounded values (Int/Real) or sorts; no logic specified."] -- combination, let the solver pick
Just l -> ["(set-logic " ++ l ++ ")"]
| True
= ["(set-logic " ++ qs ++ as ++ ufs ++ "BV)"]
where qs | null foralls && null axs = "QF_" -- axioms are likely to contain quantifiers
| True = ""
as | null arrs = ""
| True = "A"
ufs | null uis && null tbls = "" -- we represent tables as UFs
| True = "UF"
getModels
| supportsProduceModels solverCaps = ["(set-option :produce-models true)"]
| True = []
pre = ["; Automatically generated by SBV. Do not edit."]
++ map ("; " ++) comments
++ getModels
++ logic
++ [ "; --- uninterpreted sorts ---" ]
++ map declSort sorts
++ [ "; --- literal constants ---" ]
++ concatMap (declConst (supportsMacros solverCaps)) consts
++ [ "; --- skolem constants ---" ]
++ [ "(declare-fun " ++ show s ++ " " ++ swFunType ss s ++ ")" ++ userName s | Right (s, ss) <- skolemInps]
++ [ "; --- constant tables ---" ]
++ concatMap constTable constTables
++ [ "; --- skolemized tables ---" ]
++ map (skolemTable (unwords (map swType foralls))) skolemTables
++ [ "; --- arrays ---" ]
++ concat arrayConstants
++ [ "; --- uninterpreted constants ---" ]
++ concatMap declUI uis
++ [ "; --- user given axioms ---" ]
++ map declAx axs
++ [ "; --- formula ---" ]
++ [if null foralls
then "(assert ; no quantifiers"
else "(assert (forall (" ++ intercalate "\n "
["(" ++ show s ++ " " ++ swType s ++ ")" | s <- foralls] ++ ")"]
++ map (letAlign . mkLet) asgns
++ map letAlign (if null delayedEqualities then [] else ("(and " ++ deH) : map (align 5) deTs)
++ [ impAlign (letAlign assertOut) ++ replicate noOfCloseParens ')' ]
noOfCloseParens = length asgns + (if null foralls then 1 else 2) + (if null delayedEqualities then 0 else 1)
(constTables, skolemTables) = ([(t, d) | (t, Left d) <- allTables], [(t, d) | (t, Right d) <- allTables])
allTables = [(t, genTableData rm skolemMap (not (null foralls), forallArgs) (map fst consts) t) | t <- tbls]
(arrayConstants, allArrayDelayeds) = unzip $ map (declArray (not (null foralls)) (map fst consts) skolemMap) arrs
delayedEqualities@(~(deH:deTs)) = concatMap snd skolemTables ++ concat allArrayDelayeds
foralls = [s | Left s <- skolemInps]
forallArgs = concatMap ((" " ++) . show) foralls
letAlign s
| null foralls = " " ++ s
| True = " " ++ s
impAlign s
| null delayedEqualities = s
| True = " " ++ s
align n s = replicate n ' ' ++ s
-- if sat, we assert cstrs /\ out
-- if prove, we assert ~(cstrs => out) = cstrs /\ not out
assertOut
| null cstrs = o
| True = "(and " ++ unwords (map mkConj cstrs ++ [o]) ++ ")"
where mkConj = cvtSW skolemMap
o | isSat = mkConj out
| True = "(not " ++ mkConj out ++ ")"
skolemMap = M.fromList [(s, ss) | Right (s, ss) <- skolemInps, not (null ss)]
tableMap = IM.fromList $ map mkConstTable constTables ++ map mkSkTable skolemTables
where mkConstTable (((t, _, _), _), _) = (t, "table" ++ show t)
mkSkTable (((t, _, _), _), _) = (t, "table" ++ show t ++ forallArgs)
asgns = F.toList asgnsSeq
mkLet (s, e) = "(let ((" ++ show s ++ " " ++ cvtExp rm skolemMap tableMap e ++ "))"
declConst useDefFun (s, c)
| useDefFun = ["(define-fun " ++ varT ++ " " ++ cvtCW rm c ++ ")"]
| True = [ "(declare-fun " ++ varT ++ ")"
, "(assert (= " ++ show s ++ " " ++ cvtCW rm c ++ "))"
]
where varT = show s ++ " " ++ swFunType [] s
declSort s = "(declare-sort " ++ s ++ " 0)"
userName s = case s `lookup` map snd inputs of
Just u | show s /= u -> " ; tracks user variable " ++ show u
_ -> ""
declUI :: (String, SBVType) -> [String]
declUI (i, t) = ["(declare-fun " ++ i ++ " " ++ cvtType t ++ ")"]
-- NB. We perform no check to as to whether the axiom is meaningful in any way.
declAx :: (String, [String]) -> String
declAx (nm, ls) = (";; -- user given axiom: " ++ nm ++ "\n") ++ intercalate "\n" ls
constTable :: (((Int, Kind, Kind), [SW]), [String]) -> [String]
constTable (((i, ak, rk), _elts), is) = decl : map wrap is
where t = "table" ++ show i
decl = "(declare-fun " ++ t ++ " (" ++ smtType ak ++ ") " ++ smtType rk ++ ")"
wrap s = "(assert " ++ s ++ ")"
skolemTable :: String -> (((Int, Kind, Kind), [SW]), [String]) -> String
skolemTable qsIn (((i, ak, rk), _elts), _) = decl
where qs = if null qsIn then "" else qsIn ++ " "
t = "table" ++ show i
decl = "(declare-fun " ++ t ++ " (" ++ qs ++ smtType ak ++ ") " ++ smtType rk ++ ")"
-- Left if all constants, Right if otherwise
genTableData :: RoundingMode -> SkolemMap -> (Bool, String) -> [SW] -> ((Int, Kind, Kind), [SW]) -> Either [String] [String]
genTableData rm skolemMap (_quantified, args) consts ((i, aknd, _), elts)
| null post = Left (map (topLevel . snd) pre)
| True = Right (map (nested . snd) (pre ++ post))
where ssw = cvtSW skolemMap
(pre, post) = partition fst (zipWith mkElt elts [(0::Int)..])
t = "table" ++ show i
mkElt x k = (isReady, (idx, ssw x))
where idx = cvtCW rm (mkConstCW aknd k)
isReady = x `elem` consts
topLevel (idx, v) = "(= (" ++ t ++ " " ++ idx ++ ") " ++ v ++ ")"
nested (idx, v) = "(= (" ++ t ++ args ++ " " ++ idx ++ ") " ++ v ++ ")"
-- TODO: We currently do not support non-constant arrays when quantifiers are present, as
-- we might have to skolemize those. Implement this properly.
-- The difficulty is with the ArrayReset/Mutate/Merge: We have to postpone an init if
-- the components are themselves postponed, so this cannot be implemented as a simple map.
declArray :: Bool -> [SW] -> SkolemMap -> (Int, ArrayInfo) -> ([String], [String])
declArray quantified consts skolemMap (i, (_, (aKnd, bKnd), ctx)) = (adecl : map wrap pre, map snd post)
where topLevel = not quantified || case ctx of
ArrayFree Nothing -> True
ArrayFree (Just sw) -> sw `elem` consts
ArrayReset _ sw -> sw `elem` consts
ArrayMutate _ a b -> all (`elem` consts) [a, b]
ArrayMerge c _ _ -> c `elem` consts
(pre, post) = partition fst ctxInfo
nm = "array_" ++ show i
ssw sw
| topLevel || sw `elem` consts
= cvtSW skolemMap sw
| True
= tbd "Non-constant array initializer in a quantified context"
adecl = "(declare-fun " ++ nm ++ " () (Array " ++ smtType aKnd ++ " " ++ smtType bKnd ++ "))"
ctxInfo = case ctx of
ArrayFree Nothing -> []
ArrayFree (Just sw) -> declA sw
ArrayReset _ sw -> declA sw
ArrayMutate j a b -> [(all (`elem` consts) [a, b], "(= " ++ nm ++ " (store array_" ++ show j ++ " " ++ ssw a ++ " " ++ ssw b ++ "))")]
ArrayMerge t j k -> [(t `elem` consts, "(= " ++ nm ++ " (ite " ++ ssw t ++ " array_" ++ show j ++ " array_" ++ show k ++ "))")]
declA sw = let iv = nm ++ "_freeInitializer"
in [ (True, "(declare-fun " ++ iv ++ " () " ++ smtType aKnd ++ ")")
, (sw `elem` consts, "(= (select " ++ nm ++ " " ++ iv ++ ") " ++ ssw sw ++ ")")
]
wrap (False, s) = s
wrap (True, s) = "(assert " ++ s ++ ")"
swType :: SW -> String
swType s = smtType (kindOf s)
swFunType :: [SW] -> SW -> String
swFunType ss s = "(" ++ unwords (map swType ss) ++ ") " ++ swType s
smtType :: Kind -> String
smtType KBool = "Bool"
2014-04-18 02:34:25 +04:00
smtType (KBounded _ sz) = "(_ BitVec " ++ show sz ++ ")"
smtType KUnbounded = "Int"
smtType KReal = "Real"
smtType KFloat = "(_ FP 8 24)"
smtType KDouble = "(_ FP 11 53)"
smtType (KUninterpreted s) = s
cvtType :: SBVType -> String
cvtType (SBVType []) = error "SBV.SMT.SMTLib2.cvtType: internal: received an empty type!"
cvtType (SBVType xs) = "(" ++ unwords (map smtType body) ++ ") " ++ smtType ret
where (body, ret) = (init xs, last xs)
type SkolemMap = M.Map SW [SW]
type TableMap = IM.IntMap String
cvtSW :: SkolemMap -> SW -> String
cvtSW skolemMap s
| Just ss <- s `M.lookup` skolemMap
= "(" ++ show s ++ concatMap ((" " ++) . show) ss ++ ")"
| True
= show s
-- Carefully code hex numbers, SMTLib is picky about lengths of hex constants. For the time
-- being, SBV only supports sizes that are multiples of 4, but the below code is more robust
-- in case of future extensions to support arbitrary sizes.
2014-04-18 02:34:25 +04:00
hex :: Int -> Integer -> String
hex 1 v = "#b" ++ show v
2014-04-18 02:34:25 +04:00
hex sz v
| sz `mod` 4 == 0 = "#x" ++ pad (sz `div` 4) (showHex v "")
| True = "#b" ++ pad sz (showBin v "")
where pad n s = replicate (n - length s) '0' ++ s
showBin = showIntAtBase 2 intToDigit
2014-04-18 02:34:25 +04:00
cvtCW :: RoundingMode -> CW -> String
cvtCW rm x
| isBoolean x, CWInteger w <- cwVal x = if w == 0 then "false" else "true"
| isUninterpreted x, CWUninterpreted s <- cwVal x = s
| isReal x, CWAlgReal r <- cwVal x = algRealToSMTLib2 r
| isFloat x, CWFloat f <- cwVal x = showSMTFloat rm f
| isDouble x, CWDouble d <- cwVal x = showSMTDouble rm d
| not (isBounded x), CWInteger w <- cwVal x = if w >= 0 then show w else "(- " ++ show (abs w) ++ ")"
| not (hasSign x) , CWInteger w <- cwVal x = hex (intSizeOf x) w
-- signed numbers (with 2's complement representation) is problematic
-- since there's no way to put a bvneg over a positive number to get minBound..
-- Hence, we punt and use binary notation in that particular case
| hasSign x , CWInteger w <- cwVal x = if w == negate (2 ^ intSizeOf x)
then mkMinBound (intSizeOf x)
else negIf (w < 0) $ hex (intSizeOf x) (abs w)
| True = error $ "SBV.cvtCW: Impossible happened: Kind/Value disagreement on: " ++ show (kindOf x, x)
negIf :: Bool -> String -> String
negIf True a = "(bvneg " ++ a ++ ")"
negIf False a = a
-- anamoly at the 2's complement min value! Have to use binary notation here
-- as there is no positive value we can provide to make the bvneg work.. (see above)
mkMinBound :: Int -> String
mkMinBound i = "#b1" ++ replicate (i-1) '0'
getTable :: TableMap -> Int -> String
getTable m i
| Just tn <- i `IM.lookup` m = tn
| True = error $ "SBV.SMTLib2: Cannot locate table " ++ show i
cvtExp :: RoundingMode -> SkolemMap -> TableMap -> SBVExpr -> String
cvtExp rm skolemMap tableMap expr@(SBVApp _ arguments) = sh expr
where ssw = cvtSW skolemMap
bvOp = all isBounded arguments
intOp = any isInteger arguments
realOp = any isReal arguments
doubleOp = any isDouble arguments
floatOp = any isFloat arguments
boolOp = all isBoolean arguments
bad | intOp = error $ "SBV.SMTLib2: Unsupported operation on unbounded integers: " ++ show expr
| True = error $ "SBV.SMTLib2: Unsupported operation on real values: " ++ show expr
ensureBVOrBool = bvOp || boolOp || bad
ensureBV = bvOp || bad
2014-04-18 02:34:25 +04:00
addRM s = s ++ " " ++ smtRoundingMode rm
lift2 o _ [x, y] = "(" ++ o ++ " " ++ x ++ " " ++ y ++ ")"
lift2 o _ sbvs = error $ "SBV.SMTLib2.sh.lift2: Unexpected arguments: " ++ show (o, sbvs)
-- lift a binary operation with rounding-mode added; used for floating-point arithmetic
lift2WM o | doubleOp || floatOp = lift2 (addRM o)
| True = lift2 o
lift2B bOp vOp
| boolOp = lift2 bOp
| True = lift2 vOp
lift1B bOp vOp
| boolOp = lift1 bOp
| True = lift1 vOp
eqBV sgn sbvs
| boolOp = lift2 "=" sgn sbvs
| True = "(= " ++ lift2 "bvcomp" sgn sbvs ++ " #b1)"
neqBV sgn sbvs = "(not " ++ eqBV sgn sbvs ++ ")"
equal sgn sbvs
| doubleOp = lift2 "==" sgn sbvs
| floatOp = lift2 "==" sgn sbvs
| True = lift2 "=" sgn sbvs
notEqual sgn sbvs
| doubleOp = "(not " ++ equal sgn sbvs ++ ")"
| floatOp = "(not " ++ equal sgn sbvs ++ ")"
| True = lift2 "distinct" sgn sbvs
lift2S oU oS sgn = lift2 (if sgn then oS else oU) sgn
lift1 o _ [x] = "(" ++ o ++ " " ++ x ++ ")"
lift1 o _ sbvs = error $ "SBV.SMT.SMTLib2.sh.lift1: Unexpected arguments: " ++ show (o, sbvs)
sh (SBVApp Ite [a, b, c]) = "(ite " ++ ssw a ++ " " ++ ssw b ++ " " ++ ssw c ++ ")"
sh (SBVApp (LkUp (t, aKnd, _, l) i e) [])
| needsCheck = "(ite " ++ cond ++ ssw e ++ " " ++ lkUp ++ ")"
| True = lkUp
where needsCheck = case aKnd of
KBool -> (2::Integer) > fromIntegral l
2014-04-18 02:34:25 +04:00
KBounded _ n -> (2::Integer)^n > fromIntegral l
KUnbounded -> True
KReal -> error "SBV.SMT.SMTLib2.cvtExp: unexpected real valued index"
KFloat -> error "SBV.SMT.SMTLib2.cvtExp: unexpected float valued index"
KDouble -> error "SBV.SMT.SMTLib2.cvtExp: unexpected double valued index"
KUninterpreted s -> error $ "SBV.SMT.SMTLib2.cvtExp: unexpected uninterpreted valued index: " ++ s
lkUp = "(" ++ getTable tableMap t ++ " " ++ ssw i ++ ")"
cond
| hasSign i = "(or " ++ le0 ++ " " ++ gtl ++ ") "
| True = gtl ++ " "
(less, leq) = case aKnd of
KBool -> error "SBV.SMT.SMTLib2.cvtExp: unexpected boolean valued index"
2014-04-18 02:34:25 +04:00
KBounded{} -> if hasSign i then ("bvslt", "bvsle") else ("bvult", "bvule")
KUnbounded -> ("<", "<=")
KReal -> ("<", "<=")
KFloat -> ("<", "<=")
KDouble -> ("<", "<=")
KUninterpreted s -> error $ "SBV.SMT.SMTLib2.cvtExp: unexpected uninterpreted valued index: " ++ s
mkCnst = cvtCW rm . mkConstCW (kindOf i)
le0 = "(" ++ less ++ " " ++ ssw i ++ " " ++ mkCnst 0 ++ ")"
gtl = "(" ++ leq ++ " " ++ mkCnst l ++ " " ++ ssw i ++ ")"
sh (SBVApp (ArrEq i j) []) = "(= array_" ++ show i ++ " array_" ++ show j ++")"
sh (SBVApp (ArrRead i) [a]) = "(select array_" ++ show i ++ " " ++ ssw a ++ ")"
sh (SBVApp (Uninterpreted nm) []) = nm
sh (SBVApp (Uninterpreted nm) args) = "(" ++ nm' ++ " " ++ unwords (map ssw args) ++ ")"
where -- slight hack needed here to take advantage of custom floating-point functions.. sigh.
fpSpecials = ["squareRoot", "fusedMA"]
nm' | (floatOp || doubleOp) && (nm `elem` fpSpecials) = addRM nm
| True = nm
sh (SBVApp (Extract 0 0) [a]) -- special SInteger -> SReal conversion
| kindOf a == KUnbounded
= "(to_real " ++ ssw a ++ ")"
sh (SBVApp (Extract i j) [a]) | ensureBV = "((_ extract " ++ show i ++ " " ++ show j ++ ") " ++ ssw a ++ ")"
sh (SBVApp (Rol i) [a])
| bvOp = rot ssw "rotate_left" i a
| intOp = sh (SBVApp (Shl i) [a]) -- Haskell treats rotateL as shiftL for unbounded values
| True = bad
sh (SBVApp (Ror i) [a])
| bvOp = rot ssw "rotate_right" i a
| intOp = sh (SBVApp (Shr i) [a]) -- Haskell treats rotateR as shiftR for unbounded values
| True = bad
sh (SBVApp (Shl i) [a])
| bvOp = shft rm ssw "bvshl" "bvshl" i a
| i < 0 = sh (SBVApp (Shr (-i)) [a]) -- flip sign/direction
| intOp = "(* " ++ ssw a ++ " " ++ show (bit i :: Integer) ++ ")" -- Implement shiftL by multiplication by 2^i
| True = bad
sh (SBVApp (Shr i) [a])
| bvOp = shft rm ssw "bvlshr" "bvashr" i a
| i < 0 = sh (SBVApp (Shl (-i)) [a]) -- flip sign/direction
| intOp = "(div " ++ ssw a ++ " " ++ show (bit i :: Integer) ++ ")" -- Implement shiftR by division by 2^i
| True = bad
sh (SBVApp op args)
| Just f <- lookup op smtBVOpTable, ensureBVOrBool
2014-04-18 02:34:25 +04:00
= f (any hasSign args) (map ssw args)
where -- The first 4 operators below do make sense for Integer's in Haskell, but there's
-- no obvious counterpart for them in the SMTLib translation.
-- TODO: provide support for these.
smtBVOpTable = [ (And, lift2B "and" "bvand")
, (Or, lift2B "or" "bvor")
, (XOr, lift2B "xor" "bvxor")
, (Not, lift1B "not" "bvnot")
, (Join, lift2 "concat")
]
sh inp@(SBVApp op args)
| intOp, Just f <- lookup op smtOpIntTable
= f True (map ssw args)
| bvOp, Just f <- lookup op smtOpBVTable
= f (any hasSign args) (map ssw args)
| realOp, Just f <- lookup op smtOpRealTable
= f (any hasSign args) (map ssw args)
| floatOp || doubleOp, Just f <- lookup op smtOpFloatDoubleTable
= f (any hasSign args) (map ssw args)
| Just f <- lookup op uninterpretedTable
= f (map ssw args)
| True
= error $ "SBV.SMT.SMTLib2.cvtExp.sh: impossible happened; can't translate: " ++ show inp
where smtOpBVTable = [ (Plus, lift2 "bvadd")
, (Minus, lift2 "bvsub")
, (Times, lift2 "bvmul")
, (Quot, lift2S "bvudiv" "bvsdiv")
, (Rem, lift2S "bvurem" "bvsrem")
, (Equal, eqBV)
, (NotEqual, neqBV)
, (LessThan, lift2S "bvult" "bvslt")
, (GreaterThan, lift2S "bvugt" "bvsgt")
, (LessEq, lift2S "bvule" "bvsle")
, (GreaterEq, lift2S "bvuge" "bvsge")
]
smtOpRealTable = smtIntRealShared
++ [ (Quot, lift2WM "/")
]
smtOpIntTable = smtIntRealShared
++ [ (Quot, lift2 "div")
, (Rem, lift2 "mod")
]
smtOpFloatDoubleTable = smtIntRealShared
++ [(Quot, lift2WM "/")]
2014-04-18 02:34:25 +04:00
smtIntRealShared = [ (Plus, lift2WM "+")
, (Minus, lift2WM "-")
, (Times, lift2WM "*")
, (Equal, equal)
, (NotEqual, notEqual)
, (LessThan, lift2S "<" "<")
, (GreaterThan, lift2S ">" ">")
, (LessEq, lift2S "<=" "<=")
, (GreaterEq, lift2S ">=" ">=")
]
-- equality is the only thing that works on uninterpreted sorts
uninterpretedTable = [ (Equal, lift2S "=" "=" True)
, (NotEqual, lift2S "distinct" "distinct" True)
]
rot :: (SW -> String) -> String -> Int -> SW -> String
rot ssw o c x = "((_ " ++ o ++ " " ++ show c ++ ") " ++ ssw x ++ ")"
shft :: RoundingMode -> (SW -> String) -> String -> String -> Int -> SW -> String
shft rm ssw oW oS c x = "(" ++ o ++ " " ++ ssw x ++ " " ++ cvtCW rm c' ++ ")"
where s = hasSign x
c' = mkConstCW (kindOf x) c
o = if s then oS else oW