cryptol/examples/contrib/keccak.cry

132 lines
4.5 KiB
Plaintext
Raw Normal View History

2014-04-21 22:39:07 +04:00
/*
* Copyright (c) 2013 David Lazar <lazard@galois.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
2014-04-21 22:39:07 +04:00
// Specification of the Keccak (SHA-3) hash function
// Author: David Lazar
SHA_3_224 M = take(224, Keccak `{r = 1152, c = 448} M);
SHA_3_256 M = take(256, Keccak `{r = 1088, c = 512} M);
SHA_3_384 M = take(384, Keccak `{r = 832, c = 768} M);
SHA_3_512 M = take(512, Keccak `{r = 576, c = 1024} M);
Keccak : {r c m}
( fin r, fin c, fin m
, r >= 0, c >= 0, m >= 0
, fin ((r + m + 1) / r)
, (r + m + 1) / r >= 0
, (r + m + 1) / r * r - m >= 2
, 64 >= (r + c) / 25
, 25 * ((r + c) / 25) >= r
) => [m] -> [inf];
Keccak M = squeeze `{r = r} (absorb `{w = (r + c) / 25} Ps)
where Ps = pad `{r = r} M;
squeeze : {r w} (fin r, fin w, 64 >= w, r >= 0, 25 * w >= r) => [5][5][w] -> [inf];
squeeze A = take(`r, flatten A) # squeeze `{r = r} (Keccak_f A);
absorb : {r w n} (fin r, fin w, fin n, 64 >= w, 25 * w >= r) => [n][r] -> [5][5][w];
absorb Ps = as ! 0
where {
as = [zero] # [| Keccak_f `{w = w} (s ^ (unflatten p)) || s <- as || p <- Ps |];
};
pad : {r m n}
( fin r, fin m, fin n
, n == (r + m + 1) / r
, r * n - m >= 2
) => [m] -> [n][r];
pad M = split (M # [True] # zero # [True]);
Keccak_f : {b w} (fin w, b == 25 * w, 64 >= w) => [5][5][w] -> [5][5][w];
Keccak_f A = rounds ! 0
where {
rounds = [A] # [| Round RC A || RC <- RCs `{w = w} || A <- rounds |];
};
Round : {w} (fin w) => [5][5][w] -> [5][5][w] -> [5][5][w];
Round RC A = ι RC (χ (π (ρ (θ A))));
θ : {w} (fin w) => [5][5][w] -> [5][5][w];
θ A = A'
where {
C = [| xor a || a <- A |];
D = [| C @ x ^ (C @ y <<< 1)
|| x <- [0 .. 4] >>> 1
|| y <- [0 .. 4] <<< 1
|];
A' = [| [| a ^ (D @ x) || a <- A @ x |] || x <- [0 .. 4] |];
};
ρ : {w} (fin w) => [5][5][w] -> [5][5][w];
ρ A = groupBy(5, [| a <<< r || a <- join(A) || r <- R |])
where R = [00 36 03 41 18
01 44 10 45 02
62 06 43 15 61
28 55 25 21 56
27 20 39 08 14];
π : {w} (fin w) => [5][5][w] -> [5][5][w];
π A = groupBy(5, [| A @ ((x + (3:[8]) * y) % 5) @ x
|| x <- [0..4], y <- [0..4]
|]);
χ : {w} (fin w) => [5][5][w] -> [5][5][w];
χ A = groupBy(5, [| (A @ x @ y) ^ (~ A @ ((x + 1) % 5) @ y
& A @ ((x + 2) % 5) @ y)
|| x <- [0..4], y <- [0..4]
|]);
ι : {w} (fin w) => [5][5][w] -> [5][5][w] -> [5][5][w];
ι RC A = A ^ RC;
RCs : {w n} (fin w, fin n, 24 >= n, n == 12 + 2 * (lg2 w)) => [n][5][5][w];
RCs = [| [([(RC @@ [0 .. `(w - 1)])] # zero)] # zero
|| RC <- RCs64
|| _ <- [1 .. `n]
|];
RCs64 : [24][64];
RCs64 = join (transpose [
[0x0000000000000001 0x000000008000808B]
[0x0000000000008082 0x800000000000008B]
[0x800000000000808A 0x8000000000008089]
[0x8000000080008000 0x8000000000008003]
[0x000000000000808B 0x8000000000008002]
[0x0000000080000001 0x8000000000000080]
[0x8000000080008081 0x000000000000800A]
[0x8000000000008009 0x800000008000000A]
[0x000000000000008A 0x8000000080008081]
[0x0000000000000088 0x8000000000008080]
[0x0000000080008009 0x0000000080000001]
[0x000000008000000A 0x8000000080008008]
]);
unflatten : {r w} (fin r, 25*w >= r) => [r] -> [5][5][w];
unflatten p = transpose(groupBy(5, groupBy(`w, p # zero)));
flatten : {r w} [5][5][w] -> [5 * 5 * w];
flatten A = join (join (transpose A));
xor : {a b} (fin a) => [a][b] -> [b];
xor xs = xors ! 0
where xors = [0] # [| x ^ z || x <- xs || z <- xors |];