2014-04-21 22:39:07 +04:00
|
|
|
|
/*
|
|
|
|
|
* Copyright (c) 2013 David Lazar <lazard@galois.com>
|
|
|
|
|
*
|
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
|
|
|
* in the Software without restriction, including without limitation the rights
|
|
|
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
|
|
|
* furnished to do so, subject to the following conditions:
|
|
|
|
|
*
|
|
|
|
|
* The above copyright notice and this permission notice shall be included in
|
|
|
|
|
* all copies or substantial portions of the Software.
|
|
|
|
|
*
|
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
|
|
|
* THE SOFTWARE.
|
2015-08-28 19:49:29 +03:00
|
|
|
|
*/
|
2014-04-21 22:39:07 +04:00
|
|
|
|
|
|
|
|
|
// Specification of the Keccak (SHA-3) hash function
|
|
|
|
|
// Author: David Lazar
|
|
|
|
|
|
|
|
|
|
SHA_3_224 M = take(224, Keccak `{r = 1152, c = 448} M);
|
|
|
|
|
SHA_3_256 M = take(256, Keccak `{r = 1088, c = 512} M);
|
|
|
|
|
SHA_3_384 M = take(384, Keccak `{r = 832, c = 768} M);
|
|
|
|
|
SHA_3_512 M = take(512, Keccak `{r = 576, c = 1024} M);
|
|
|
|
|
|
|
|
|
|
Keccak : {r c m}
|
|
|
|
|
( fin r, fin c, fin m
|
|
|
|
|
, r >= 0, c >= 0, m >= 0
|
|
|
|
|
, fin ((r + m + 1) / r)
|
|
|
|
|
, (r + m + 1) / r >= 0
|
|
|
|
|
, (r + m + 1) / r * r - m >= 2
|
|
|
|
|
, 64 >= (r + c) / 25
|
|
|
|
|
, 25 * ((r + c) / 25) >= r
|
|
|
|
|
) => [m] -> [inf];
|
|
|
|
|
Keccak M = squeeze `{r = r} (absorb `{w = (r + c) / 25} Ps)
|
|
|
|
|
where Ps = pad `{r = r} M;
|
|
|
|
|
|
|
|
|
|
squeeze : {r w} (fin r, fin w, 64 >= w, r >= 0, 25 * w >= r) => [5][5][w] -> [inf];
|
|
|
|
|
squeeze A = take(`r, flatten A) # squeeze `{r = r} (Keccak_f A);
|
|
|
|
|
|
|
|
|
|
absorb : {r w n} (fin r, fin w, fin n, 64 >= w, 25 * w >= r) => [n][r] -> [5][5][w];
|
|
|
|
|
absorb Ps = as ! 0
|
|
|
|
|
where {
|
|
|
|
|
as = [zero] # [| Keccak_f `{w = w} (s ^ (unflatten p)) || s <- as || p <- Ps |];
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
pad : {r m n}
|
|
|
|
|
( fin r, fin m, fin n
|
|
|
|
|
, n == (r + m + 1) / r
|
|
|
|
|
, r * n - m >= 2
|
|
|
|
|
) => [m] -> [n][r];
|
|
|
|
|
pad M = split (M # [True] # zero # [True]);
|
|
|
|
|
|
|
|
|
|
Keccak_f : {b w} (fin w, b == 25 * w, 64 >= w) => [5][5][w] -> [5][5][w];
|
|
|
|
|
Keccak_f A = rounds ! 0
|
|
|
|
|
where {
|
|
|
|
|
rounds = [A] # [| Round RC A || RC <- RCs `{w = w} || A <- rounds |];
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
Round : {w} (fin w) => [5][5][w] -> [5][5][w] -> [5][5][w];
|
|
|
|
|
Round RC A = ι RC (χ (π (ρ (θ A))));
|
|
|
|
|
|
|
|
|
|
θ : {w} (fin w) => [5][5][w] -> [5][5][w];
|
|
|
|
|
θ A = A'
|
|
|
|
|
where {
|
|
|
|
|
C = [| xor a || a <- A |];
|
|
|
|
|
D = [| C @ x ^ (C @ y <<< 1)
|
|
|
|
|
|| x <- [0 .. 4] >>> 1
|
|
|
|
|
|| y <- [0 .. 4] <<< 1
|
|
|
|
|
|];
|
|
|
|
|
A' = [| [| a ^ (D @ x) || a <- A @ x |] || x <- [0 .. 4] |];
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
ρ : {w} (fin w) => [5][5][w] -> [5][5][w];
|
|
|
|
|
ρ A = groupBy(5, [| a <<< r || a <- join(A) || r <- R |])
|
|
|
|
|
where R = [00 36 03 41 18
|
|
|
|
|
01 44 10 45 02
|
|
|
|
|
62 06 43 15 61
|
|
|
|
|
28 55 25 21 56
|
|
|
|
|
27 20 39 08 14];
|
|
|
|
|
|
|
|
|
|
π : {w} (fin w) => [5][5][w] -> [5][5][w];
|
|
|
|
|
π A = groupBy(5, [| A @ ((x + (3:[8]) * y) % 5) @ x
|
|
|
|
|
|| x <- [0..4], y <- [0..4]
|
|
|
|
|
|]);
|
|
|
|
|
|
|
|
|
|
χ : {w} (fin w) => [5][5][w] -> [5][5][w];
|
|
|
|
|
χ A = groupBy(5, [| (A @ x @ y) ^ (~ A @ ((x + 1) % 5) @ y
|
|
|
|
|
& A @ ((x + 2) % 5) @ y)
|
|
|
|
|
|| x <- [0..4], y <- [0..4]
|
|
|
|
|
|]);
|
|
|
|
|
|
|
|
|
|
ι : {w} (fin w) => [5][5][w] -> [5][5][w] -> [5][5][w];
|
|
|
|
|
ι RC A = A ^ RC;
|
|
|
|
|
|
|
|
|
|
RCs : {w n} (fin w, fin n, 24 >= n, n == 12 + 2 * (lg2 w)) => [n][5][5][w];
|
|
|
|
|
RCs = [| [([(RC @@ [0 .. `(w - 1)])] # zero)] # zero
|
|
|
|
|
|| RC <- RCs64
|
|
|
|
|
|| _ <- [1 .. `n]
|
|
|
|
|
|];
|
|
|
|
|
|
|
|
|
|
RCs64 : [24][64];
|
|
|
|
|
RCs64 = join (transpose [
|
|
|
|
|
[0x0000000000000001 0x000000008000808B]
|
|
|
|
|
[0x0000000000008082 0x800000000000008B]
|
|
|
|
|
[0x800000000000808A 0x8000000000008089]
|
|
|
|
|
[0x8000000080008000 0x8000000000008003]
|
|
|
|
|
[0x000000000000808B 0x8000000000008002]
|
|
|
|
|
[0x0000000080000001 0x8000000000000080]
|
|
|
|
|
[0x8000000080008081 0x000000000000800A]
|
|
|
|
|
[0x8000000000008009 0x800000008000000A]
|
|
|
|
|
[0x000000000000008A 0x8000000080008081]
|
|
|
|
|
[0x0000000000000088 0x8000000000008080]
|
|
|
|
|
[0x0000000080008009 0x0000000080000001]
|
|
|
|
|
[0x000000008000000A 0x8000000080008008]
|
|
|
|
|
]);
|
|
|
|
|
|
|
|
|
|
unflatten : {r w} (fin r, 25*w >= r) => [r] -> [5][5][w];
|
|
|
|
|
unflatten p = transpose(groupBy(5, groupBy(`w, p # zero)));
|
|
|
|
|
|
|
|
|
|
flatten : {r w} [5][5][w] -> [5 * 5 * w];
|
|
|
|
|
flatten A = join (join (transpose A));
|
|
|
|
|
|
|
|
|
|
xor : {a b} (fin a) => [a][b] -> [b];
|
|
|
|
|
xor xs = xors ! 0
|
2015-08-28 19:49:29 +03:00
|
|
|
|
where xors = [0] # [| x ^ z || x <- xs || z <- xors |];
|