mirror of
https://github.com/GaloisInc/cryptol.git
synced 2024-12-17 13:01:31 +03:00
44f8bcd310
Note: this is actually Cryptol 1 code. We should port it. I've started the process, but don't have a complete port yet.
132 lines
4.5 KiB
Plaintext
132 lines
4.5 KiB
Plaintext
/*
|
||
* Copyright (c) 2013 David Lazar <lazard@galois.com>
|
||
*
|
||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
* of this software and associated documentation files (the "Software"), to deal
|
||
* in the Software without restriction, including without limitation the rights
|
||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
* copies of the Software, and to permit persons to whom the Software is
|
||
* furnished to do so, subject to the following conditions:
|
||
*
|
||
* The above copyright notice and this permission notice shall be included in
|
||
* all copies or substantial portions of the Software.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
* THE SOFTWARE.
|
||
*/
|
||
|
||
// Specification of the Keccak (SHA-3) hash function
|
||
// Author: David Lazar
|
||
|
||
SHA_3_224 M = take(224, Keccak `{r = 1152, c = 448} M);
|
||
SHA_3_256 M = take(256, Keccak `{r = 1088, c = 512} M);
|
||
SHA_3_384 M = take(384, Keccak `{r = 832, c = 768} M);
|
||
SHA_3_512 M = take(512, Keccak `{r = 576, c = 1024} M);
|
||
|
||
Keccak : {r c m}
|
||
( fin r, fin c, fin m
|
||
, r >= 0, c >= 0, m >= 0
|
||
, fin ((r + m + 1) / r)
|
||
, (r + m + 1) / r >= 0
|
||
, (r + m + 1) / r * r - m >= 2
|
||
, 64 >= (r + c) / 25
|
||
, 25 * ((r + c) / 25) >= r
|
||
) => [m] -> [inf];
|
||
Keccak M = squeeze `{r = r} (absorb `{w = (r + c) / 25} Ps)
|
||
where Ps = pad `{r = r} M;
|
||
|
||
squeeze : {r w} (fin r, fin w, 64 >= w, r >= 0, 25 * w >= r) => [5][5][w] -> [inf];
|
||
squeeze A = take(`r, flatten A) # squeeze `{r = r} (Keccak_f A);
|
||
|
||
absorb : {r w n} (fin r, fin w, fin n, 64 >= w, 25 * w >= r) => [n][r] -> [5][5][w];
|
||
absorb Ps = as ! 0
|
||
where {
|
||
as = [zero] # [| Keccak_f `{w = w} (s ^ (unflatten p)) || s <- as || p <- Ps |];
|
||
};
|
||
|
||
pad : {r m n}
|
||
( fin r, fin m, fin n
|
||
, n == (r + m + 1) / r
|
||
, r * n - m >= 2
|
||
) => [m] -> [n][r];
|
||
pad M = split (M # [True] # zero # [True]);
|
||
|
||
Keccak_f : {b w} (fin w, b == 25 * w, 64 >= w) => [5][5][w] -> [5][5][w];
|
||
Keccak_f A = rounds ! 0
|
||
where {
|
||
rounds = [A] # [| Round RC A || RC <- RCs `{w = w} || A <- rounds |];
|
||
};
|
||
|
||
Round : {w} (fin w) => [5][5][w] -> [5][5][w] -> [5][5][w];
|
||
Round RC A = ι RC (χ (π (ρ (θ A))));
|
||
|
||
θ : {w} (fin w) => [5][5][w] -> [5][5][w];
|
||
θ A = A'
|
||
where {
|
||
C = [| xor a || a <- A |];
|
||
D = [| C @ x ^ (C @ y <<< 1)
|
||
|| x <- [0 .. 4] >>> 1
|
||
|| y <- [0 .. 4] <<< 1
|
||
|];
|
||
A' = [| [| a ^ (D @ x) || a <- A @ x |] || x <- [0 .. 4] |];
|
||
};
|
||
|
||
ρ : {w} (fin w) => [5][5][w] -> [5][5][w];
|
||
ρ A = groupBy(5, [| a <<< r || a <- join(A) || r <- R |])
|
||
where R = [00 36 03 41 18
|
||
01 44 10 45 02
|
||
62 06 43 15 61
|
||
28 55 25 21 56
|
||
27 20 39 08 14];
|
||
|
||
π : {w} (fin w) => [5][5][w] -> [5][5][w];
|
||
π A = groupBy(5, [| A @ ((x + (3:[8]) * y) % 5) @ x
|
||
|| x <- [0..4], y <- [0..4]
|
||
|]);
|
||
|
||
χ : {w} (fin w) => [5][5][w] -> [5][5][w];
|
||
χ A = groupBy(5, [| (A @ x @ y) ^ (~ A @ ((x + 1) % 5) @ y
|
||
& A @ ((x + 2) % 5) @ y)
|
||
|| x <- [0..4], y <- [0..4]
|
||
|]);
|
||
|
||
ι : {w} (fin w) => [5][5][w] -> [5][5][w] -> [5][5][w];
|
||
ι RC A = A ^ RC;
|
||
|
||
RCs : {w n} (fin w, fin n, 24 >= n, n == 12 + 2 * (lg2 w)) => [n][5][5][w];
|
||
RCs = [| [([(RC @@ [0 .. `(w - 1)])] # zero)] # zero
|
||
|| RC <- RCs64
|
||
|| _ <- [1 .. `n]
|
||
|];
|
||
|
||
RCs64 : [24][64];
|
||
RCs64 = join (transpose [
|
||
[0x0000000000000001 0x000000008000808B]
|
||
[0x0000000000008082 0x800000000000008B]
|
||
[0x800000000000808A 0x8000000000008089]
|
||
[0x8000000080008000 0x8000000000008003]
|
||
[0x000000000000808B 0x8000000000008002]
|
||
[0x0000000080000001 0x8000000000000080]
|
||
[0x8000000080008081 0x000000000000800A]
|
||
[0x8000000000008009 0x800000008000000A]
|
||
[0x000000000000008A 0x8000000080008081]
|
||
[0x0000000000000088 0x8000000000008080]
|
||
[0x0000000080008009 0x0000000080000001]
|
||
[0x000000008000000A 0x8000000080008008]
|
||
]);
|
||
|
||
unflatten : {r w} (fin r, 25*w >= r) => [r] -> [5][5][w];
|
||
unflatten p = transpose(groupBy(5, groupBy(`w, p # zero)));
|
||
|
||
flatten : {r w} [5][5][w] -> [5 * 5 * w];
|
||
flatten A = join (join (transpose A));
|
||
|
||
xor : {a b} (fin a) => [a][b] -> [b];
|
||
xor xs = xors ! 0
|
||
where xors = [0] # [| x ^ z || x <- xs || z <- xors |];
|