mirror of
https://github.com/GaloisInc/cryptol.git
synced 2025-01-05 15:07:12 +03:00
6.0 KiB
6.0 KiB
Comparisons and Ordering
Old types:
(==) : {a} (fin a) => (a,a) -> Bit
(!=) : {a} (fin a) => (a,a) -> Bit
(===) : {a b} (fin b) => (a -> b,a -> b) -> a -> Bit
(!==) : {a b} (fin b) => (a -> b,a -> b) -> a -> Bit
(<) : {n} (fin n) => ([n],[n]) -> Bit
(>) : {n} (fin n) => ([n],[n]) -> Bit
(<=) : {n} (fin n) => ([n],[n]) -> Bit
(>=) : {n} (fin n) => ([n],[n]) -> Bit
min : {n} (fin n) => ([n],[n]) -> [n]
max : {n} (fin n) => ([n],[n]) -> [n]
New types:
(==) : {a} (Cmp a) => a -> a -> Bit
(!=) : {a} (Cmp a) => a -> a -> Bit
(===) : {a,b} (Cmp b) => (a -> b) -> (a -> b) -> a -> Bit
(!==) : {a,b} (Cmp b) => (a -> b) -> (a -> b) -> a -> Bit
(<) : {a} (Cmp a) => a -> a -> Bit
(>) : {a} (Cmp a) => a -> a -> Bit
(<=) : {a} (Cmp a) => a -> a -> Bit
(>=) : {a} (Cmp a) => a -> a -> Bit
min : {a} (Cmp a) => a -> a -> a
max : {a} (Cmp a) => a -> a -> a
instance Cmp Bit
// No instance for functions.
instance (Cmp a, fin n) => Cmp [n] a
instance (Cmp a, Cmp b) => Cmp (a,b)
instance (Cmp a, Cmp b) => Cmp { x : a, y : b }
Arithmetic
Old types:
negate : {n a} (n >= 1) => [n]a -> [n]a
(+) : {n a} ([n]a,[n]a) -> [n]a
(-) : {n a} ([n]a,[n]a) -> [n]a
(*) : {n a} ([n]a,[n]a) -> [n]a
(/) : {n a} ([n]a,[n]a) -> [n]a
(%) : {n a} ([n]a,[n]a) -> [n]a
(**) : {n a} ([n]a,[n]a) -> [n]a
New types:
negate : {a} (Arith a) => a -> a
(+) : {a} (Arith a) => a -> a -> a
(-) : {a} (Arith a) => a -> a -> a
(*) : {a} (Arith a) => a -> a -> a
(/) : {a} (Arith a) => a -> a -> a
(%) : {a} (Arith a) => a -> a -> a
(^^) : {a} (Arith a) => a -> a -> a
// No instance for `Bit`.
instance (fin n) => Arith ( [n] Bit)
instance (Arith a) => Arith ( [n] a)
instance (Arith b) => Arith (a -> b)
instance (Arith a, Arith b) => Arith (a,b)
instance (Arith a, Arith b) => Arith { x : a, y : b }
Note that because there is no instances for Arith Bit
the top two instances do not actually overlap.
A corner case: unlike the old system, we'd also have to
define negate
at type 0
. This makes sense, there
is only one element of type [0]
, so it is naturally
its own inverse, thus negate
should behave as the
identity function.
Boolean
Old types:
False : Bit
True : Bit
zero : {a} a
(&) : {a} (a,a) -> a
(|) : {a} (a,a) -> a
(^) : {a} (a,a) -> a
(~) : {a} a -> a
New types:
False : Bit
True : Bit
zero : (Logic a) => a
(&&) : (Logic a) => a -> a -> a
(||) : (Logic a) => a -> a -> a
(^) : (Logic a) => a -> a -> a
(~) : (Logic a) => a -> a
// There are instances for all types,
// so we could potentially omit the constraints.
instance Logic Bit
instance Logic a => Logic ([n] a)
instance Logic b => Logic (a -> b)
instance (Logic a, Logic b) => Logic (a,b)
instance (Logic a, Logic b) => Logic { x : a, y : b }
Sequences
Old types:
width : {n a m} (m >= width n) => [n]a -> [m]
join : {n m a} [n][m]a -> [n*m]a
split : {n m a} [n*m]a -> [n][m]a
splitBy : {n m a} (n,[n*m]a) -> [n][m]a
groupBy : {n m a} (m,[n*m]a) -> [n][m]a
(#) : {n a m} (fin n) => ([n]a,[m]a) -> [n+m]a
tail : {n a} [n+1]a -> [n]a
take : {n m a} (fin n,m >= n) => (n,[n+m]a) -> [n]a
drop : {n m a} (fin n,n >= n) => (n,[n+m]a) -> [m]a
reverse : {n a} (fin n) => [n]a -> [n]a
transpose : {n m a} [n][m]a -> [m][n]a
(@) : {n a m} ([n]a,[m]) -> a
(@@) : {n a m i} ([n]a,[m][i]) -> [m]a
(!) : {n a m} (fin n) => ([n]a,[m]) -> a
(!!) : {n a m i} (fin n) => ([n]a,[m][i]) -> [m]a
New types:
length : {n,a,m} (m >= width n) => [n]a -> [m]
join : {parts,ench,a} (fin each) => [parts][each]a -> [parts * each]a
split : {parts,each,a} (fin each) => [parts * each]a -> [parts][each]a
(#) : {front,back,a} (fin front) => [front]a -> [back]a -> [front + back]a
splitAt : {front,back,a} (fin front) => [from + back] a -> ([front] a, [back] a)
reverse : {n,a} (fin n) => [n]a -> [n]a
transpose : {n,m,a} [n][m]a -> [m][n]a
(@) : {n a m} [n]a -> [m] -> a
(@@) : {n a m i} [n]a -> [m][i] -> [m]a
(!) : {n a m} (fin n) => [n]a -> [m] -> a
(!!) : {n a m i} (fin n) => [n]a -> [m][i] -> [m]a
// Abbreviations
splitBy n = split`{parts = n}
groupBy n = split`{each = n}
tail n = splitAt`{front = 1}.2
take n = splitAt`{front = n}.1
drop n = splitAt`{front = n}.2
/* Also, `length` is not really needed:
length : {n,a,m} (m >= width n) => [n]a -> [m]
length _ = `n
*/
Shift And Rotate
Old types:
(<<) : {n a m} (m >= lg2 n,fin n) => ([n]a,[m]) -> [n]a
(>>) : {n a m} (m >= lg2 n,fin n) => ([n]a,[m]) -> [n]a
(<<<) : {n a m} (m >= lg2 n,fin n) => ([n]a,[m]) -> [n]a
(>>>) : {n a m} (m >= lg2 n,fin n) => ([n]a,[m]) -> [n]a
New types:
(<<) : {n,a,m} (fin n, Logic a) => [n]a -> [m] -> [n]a
(>>) : {n,a,m} (fin n, Logic a) => [n]a -> [m] -> [n]a
(<<<) : {n,a,m} (fin n, Logic a) => [n]a -> [m] -> [n]a
(>>>) : {n,a,m} (fin n, Logic a) => [n]a -> [m] -> [n]a
Random Values
Old types:
random : {a b} => [a] -> b
New types:
random : {a} => [32] -> a
Debugging
ASSERT : {n a} (Bit,[n][8],a) -> a
undefined : {a} a
error : {n a} [n][8] -> a
trace : {n a j} ([n][8],a,j) -> j
Hints for Hardware Generation?
pipeline_stop : {a} a -> a
pipeline : {n a} (fin n) => ([n],a) -> a
seq : {n a} [n]a -> [n]a
par : {n a} [n]a -> [n]a
reg : {a} a -> a
const : {a} a -> a