Bend/README.md
2024-05-17 12:03:53 -03:00

4.6 KiB

Bend

Bend is a massively parallel, high-level programming language.

Unlike low-level alternatives like CUDA and Metal, Bend has the feeling and features of expressive languages like Python and Haskell, including fast object allocations, higher-order functions with full closure support, unrestricted recursion, even continuations. Yet, it runs on massively parallel hardware like GPUs, with near-linear speedup based on core count, and zero explicit parallel annotations: no thread spawning, no locks, mutexes, atomics. Bend is powered by the HVM2 runtime.

A Quick Demo

bendlivedemo

Using Bend

First, install Rust nightly. Then, install both HVM2 and Bend with:

cargo +nightly install hvm
cargo +nightly install bend-lang

Finally, write some Bend file, and run it with one of these commands:

bend run    <file.hvm> # uses the Rust interpreter (sequential)
bend run-c  <file.hvm> # uses the C interpreter (parallel)
bend run-cu <file.hvm> # uses the CUDA interpreter (massively parallel)

You can also compile Bend to standalone C/CUDA files with gen-c and gen-cu, for maximum performance. But keep in mind our code gen is still on its infancy, and is nowhere as mature as SOTA compilers like GCC and GHC.

Parallel Programming in Bend

To write parallel programs in Bend, all you have to do is... nothing. Other than not making it inherently sequential! For example, the expression:

(((1 + 2) + 3) + 4)

Can not run in parallel, because +4 depends on +3 which depends on (1+2). But the following expression:

((1 + 2) + (3 + 4))

Can run in parallel, because (1+2) and (3+4) are independent; and it will, per Bend's fundamental pledge:

Everything that can run in parallel, will run in parallel.

For a more complete example, consider:

def sum(depth, x):
  switch depth:
    case 0:
      return x
    case _:
      fst = sum(depth-1, x*2+0) # adds the fst half
      snd = sum(depth-1, x*2+1) # adds the snd half
      return fst + snd
    
def main:
  return sum(30, 0)

This code adds all numbers from 0 up to (but not including) 2^30. But, instead of a loop, we use a recursive divide-and-conquer approach. Since this approach is inherently parallel, Bend will run it multi-threaded. Some benchmarks:

  • CPU, Apple M3 Max, 1 thread: 3.5 minutes

  • CPU, Apple M3 Max, 16 threads: 10.26 seconds

  • GPU, NVIDIA RTX 4090, 32k threads: 1.88 seconds

That's a 111x speedup by doing nothing. No thread spawning, no explicit management of locks, mutexes. We just asked bend to run our program on RTX, and it did. Simple as that. Note that, for now, Bend only supports 24-bit machine ints (u24), thus, results are always mod 2^24.

Bend isn't limited to a specific paradigm, like tensors or matrices. Any concurrent system, from shaders to Erlang-like actor models can be emulated on Bend. For example, to render images in real time, we could simply allocate an immutable tree on each frame:

# given a shader, returns a square image
def render(depth, shader):
  bend d = 0, i = 0:
    when d < depth:
      color = (fork(d+1, i*2+0), fork(d+1, i*2+1))
    else:
      width = depth / 2
      color = demo_shader(i % width, i / width)
  return color

# given a position, returns a color
# for this demo, it just busy loops
def demo_shader(x, y):
  bend i = 0:
    when i < 5000:
      color = fork(i + 1)
    else:
      color = 0x000001
  return color

# renders a 256x256 image using demo_shader
def main:
  return render(16, demo_shader)

And it would actually work. Even involved algorithms, such as a Bitonic Sort using tree rotations, parallelize well on Bend. Long-distance communication is performed by global beta-reduction (as per the Interaction Calculus), and synchronized correctly and efficiently by HVM2's atomic linker.