Problem:
- `(void)` simply casts the expression to void. This is understood to
indicate that it is ignored, but this is really a compiler trick to
get the compiler to not generate a warning.
Solution:
- Use the `[[maybe_unused]]` attribute to indicate the value is unused.
Note:
- Functions taking a `(void)` argument list have also been changed to
`()` because this is not needed and shows up in the same grep
command.
Problem:
- `typedef` is a keyword which comes from C and carries with it old
syntax that is hard to read.
- Creating type aliases with the `using` keyword allows for easier
future maintenance because it supports template syntax.
- There is inconsistent use of `typedef` vs `using`.
Solution:
- Use `clang-tidy`'s checker called `modernize-use-using` to update
the syntax to use the newer syntax.
- Remove unused functions to make `clang-tidy` happy.
- This results in consistency within the codebase.
This makes most operations thread safe, especially so that they
can safely be used in the Kernel. This includes obtaining a strong
reference from a weak reference, which now requires an explicit
call to WeakPtr::strong_ref(). Another major change is that
Weakable::make_weak_ref() may require the explicit target type.
Previously we used reinterpret_cast in WeakPtr, assuming that it
can be properly converted. But WeakPtr does not necessarily have
the knowledge to be able to do this. Instead, we now ask the class
itself to deliver a WeakPtr to the type that we want.
Also, WeakLink is no longer specific to a target type. The reason
for this is that we want to be able to safely convert e.g. WeakPtr<T>
to WeakPtr<U>, and before this we just reinterpret_cast the internal
WeakLink<T> to WeakLink<U>, which is a bold assumption that it would
actually produce the correct code. Instead, WeakLink now operates
on just a raw pointer and we only make those constructors/operators
available if we can verify that it can be safely cast.
In order to guarantee thread safety, we now use the least significant
bit in the pointer for locking purposes. This also means that only
properly aligned pointers can be used.
Problem:
- `constexpr` functions are decorated with the `inline` specifier
keyword. This is redundant because `constexpr` functions are
implicitly `inline`.
- [dcl.constexpr], §7.1.5/2 in the C++11 standard): "constexpr
functions and constexpr constructors are implicitly inline (7.1.2)".
Solution:
- Remove the redundant `inline` keyword.
Problem:
- `Checked` is not `constexpr`-aware.
Solution:
- Decorate member functions with `constexpr` keyword.
- Add tests to ensure the functionality where possible.
This would previously fail at runtime, and it would have zero indication
of what exactly went wrong.
Also adds `AK::DependentFalse<Ts...>', which is a...dependent false.
Two things I hate about C++:
1. 'int', 'signed int' and 'unsigned int' are two distinct types while
'char, 'signed char' and 'unsigned char' are *three* distinct types.
This is because 'signed int' is an alias for 'int' but 'signed char'
can't be an alias for 'char' because on some weird systems 'char' is
unsigned.
One might think why not do it the other way around, make 'int' an
alias for 'signed int' and 'char' an alias for whatever that is on
the platform, or make 'char' signed on all platforms. But who am I
to ask?
2. 'unsigned long' and 'unsigned long long' are always different types,
even if both are 64 bit numbers.
This commit fixes a few bugs that coming from this.
See Also: 1b3169f405.
This makes PrintfImplementation usable with any sequence, provided that
a 'next element' function can be written for it.
Does not affect the behaviour of printf() and co.
For some weird reason the C++ standard considers char, signed char and
unsigned char *three* different types. On the other hand int is just an
alias for signed int, meaning that int, signed int and unsigned int are
just *two* different types.
https://stackoverflow.com/a/32856568/8746648
This makes error messages more useful during debugging.
Old:
START Running test compare_views
FAIL: ../AK/Tests/TestStringView.cpp:59: EXPECT_EQ(view1, "foobar") failed
New:
START Running test compare_views
FAIL: ../AK/Tests/TestStringView.cpp:59: EXPECT_EQ(view1, "foobar") failed: LHS="foo", RHS="foobar"
I totally forgot about the C++ basics here. There are three distinct
types: "char", "signed char" and "unsigned char". Whether "char" is
signed or unsigned is implementation specific.
Move the "fast memcpy" stuff out of StdLibExtras.h and into Memory.h.
This will break a ton of things that were relying on StdLibExtras.h
to include a bunch of other headers. Fix will follow immediately after.
This makes it possible to include StdLibExtras.h from Types.h, which is
the main point of this exercise.
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
We had some kernel-specific gizmos in AK that should really just be in the
Kernel subdirectory instead. The only thing remaining after moving those
was mmx_memcpy() which I moved to the ARCH(i386)-specific section of
LibC/string.cpp.
Also run it across the whole tree to get everything using the One True Style.
We don't yet run this in an automated fashion as it's a little slow, but
there is a snippet to do so in makeall.sh.
I just discovered the hard way that clobbering FPU/MMX/SSE registers in the
kernel makes things very confusing for userspace (and other kernel threads.)
Let's banish all of those things from the kernel to keep things simple.
The window frame is an object that contains a window, its title bar and
window border. This way WSWindowManager doesn't have to know about all the
different types of window borders, titlebar rects, etc.