The VirtIO specification defines many types of devices with different
purposes, and it also defines 3 possible transport mediums where devices
could be connected to the host machine.
We only care about the PCIe transport, but this commit puts the actual
foundations for supporting the lean MMIO transport too in the future.
To ensure things are kept abstracted but still functional, the VirtIO
transport code is responsible for what is deemed as related to an actual
transport type - allocation of interrupt handlers and tinkering with low
level transport-related registers, etc.
The name for this directory is a bit awkward. Also, the distinction of
constant information is not really valuable as I thought it would be, so
let's bring that information back into the /sys/kernel directory.
The name "variables" is a bit awkward and what the directory entries are
really about is kernel configuration so let's make it clear with the new
name.
This is a minimal set of changes to allow `serenity.sh build riscv64` to
successfully generate the build environment and start building. This
includes some, but not all, assembly stubs that will be needed later on;
they are currently empty.
While LLD and mold support RELR "packed" relocations on all
architectures, the BFD linker currently only implements them on x86-64
and POWER.
This fixes two issues:
- The Kernel had it enabled even for AArch64 + GCC, which led to the
following being printed: `warning: -z pack-relative-relocs ignored`.
- The userland always had it disabled, even in the supported AArch64 +
Clang/mold scenarios.
Two non-functional changes:
- Remove pointless `-latomic` flag. It was specified via
`add_compile_options`, which only affects compilation and not linking,
so the library was never actually linked into the kernel. In fact, we
do not even build `libatomic` for our toolchain.
- Do not disable `-Wnonnull`. The warning-causing code was fixed at some
point.
This commit also removes `-mstrict-align` from the userland. Our target
AArch64 hardware natively supports unaligned accesses without a
significant performance penalty. Allowing the compiler to insert
unaligned accesses into aligned-as-written code allows for some
performance optimizations in fact. We keep this option turned on in the
kernel to preserve correctness for MMIO, as that might be sensitive to
alignment.
For a long time, our shutdown procedure has basically been:
- Acquire big process lock.
- Switch framebuffer to Kernel debug console.
- Sync and lock all file systems so that disk caches are flushed and
files are in a good state.
- Use firmware and architecture-specific functionality to perform
hardware shutdown.
This naive and simple shutdown procedure has multiple issues:
- No processes are terminated properly, meaning they cannot perform more
complex cleanup work. If they were in the middle of I/O, for instance,
only the data that already reached the Kernel is written to disk, and
data corruption due to unfinished writes can therefore still occur.
- No file systems are unmounted, meaning that any important unmount work
will never happen. This is important for e.g. Ext2, which has
facilites for detecting improper unmounts (see superblock's s_state
variable) and therefore requires a proper unmount to be performed.
This was also the starting point for this PR, since I wanted to
introduce basic Ext2 file system checking and unmounting.
- No hardware is properly shut down beyond what the system firmware does
on its own.
- Shutdown is performed within the write() call that asked the Kernel to
change its power state. If the shutdown procedure takes longer (i.e.
when it's done properly), this blocks the process causing the shutdown
and prevents any potentially-useful interactions between Kernel and
userland during shutdown.
In essence, current shutdown is a glorified system crash with minimal
file system cleanliness guarantees.
Therefore, this commit is the first step in improving our shutdown
procedure. The new shutdown flow is now as follows:
- From the write() call to the power state SysFS node, a new task is
started, the Power State Switch Task. Its only purpose is to change
the operating system's power state. This task takes over shutdown and
reboot duties, although reboot is not modified in this commit.
- The Power State Switch Task assumes that userland has performed all
shutdown duties it can perform on its own. In particular, it assumes
that all kinds of clean process shutdown have been done, and remaining
processes can be hard-killed without consequence. This is an important
separation of concerns: While this commit does not modify userland, in
the future SystemServer will be responsible for performing proper
shutdown of user processes, including timeouts for stubborn processes
etc.
- As mentioned above, the task hard-kills remaining user processes.
- The task hard-kills all Kernel processes except itself and the
Finalizer Task. Since Kernel processes can delay their own shutdown
indefinitely if they want to, they have plenty opportunity to perform
proper shutdown if necessary. This may become a problem with
non-cooperative Kernel tasks, but as seen two commits earlier, for now
all tasks will cooperate within a few seconds.
- The task waits for the Finalizer Task to clean up all processes.
- The task hard-kills and finalizes the Finalizer Task itself, meaning
that it now is the only remaining process in the system.
- The task syncs and locks all file systems, and then unmounts them. Due
to an unknown refcount bug we currently cannot unmount the root file
system; therefore the task is able to abort the clean unmount if
necessary.
- The task performs platform-dependent hardware shutdown as before.
This commit has multiple remaining issues (or exposed existing ones)
which will need to be addressed in the future but are out of scope for
now:
- Unmounting the root filesystem is impossible due to remaining
references to the inodes /home and /home/anon. I investigated this
very heavily and could not find whoever is holding the last two
references.
- Userland cannot perform proper cleanup, since the Kernel's power state
variable is accessed directly by tools instead of a proper userland
shutdown procedure directed by SystemServer.
The recently introduced Firmware/PowerState procedures are removed
again, since all of the architecture-independent code can live in the
power state switch task. The architecture-specific code is kept,
however.
Once we move to a more proper shutdown procedure, processes other than
the finalizer task must be able to perform cleanup and finalization
duties, not only because the finalizer task itself needs to be cleaned
up by someone. This global variable, mirroring the early boot flags,
allows a future shutdown process to perform cleanup on its own.
Note that while this *could* be considered a weakening in security, the
attack surface is minimal and the results are not dramatic. To exploit
this, an attacker would have to gain a Kernel write primitive to this
global variable (bypassing KASLR among other things) and then gain some
way of calling the relevant functions, all of this only to destroy some
other running process. The same effect can be achieved with LPE which
can often be gained with significantly simpler userspace exploits (e.g.
of setuid binaries).
The driver would crash if it was unable to find an output route, and
subsequently the destruction of controller did not invoke
`GenericInterruptHandler::will_be_destroyed()` because on the level of
`AudioController`, that method is unavailable.
By decoupling the interrupt handling from the controller, we get a new
refcounted class that correctly cleans up after itself :^)
This is a preparation before we can create a usable mechanism to use
filesystem-specific mount flags.
To keep some compatibility with userland code, LibC and LibCore mount
functions are kept being usable, but now instead of doing an "atomic"
syscall, they do multiple syscalls to perform the complete procedure of
mounting a filesystem.
The FileBackedFileSystem IntrusiveList in the VFS code is now changed to
be protected by a Mutex, because when we mount a new filesystem, we need
to check if a filesystem is already created for a given source_fd so we
do a scan for that OpenFileDescription in that list. If we fail to find
an already-created filesystem we create a new one and register it in the
list if we successfully mounted it. We use a Mutex because we might need
to initiate disk access during the filesystem creation, which will take
other mutexes in other parts of the kernel, therefore making it not
possible to take a spinlock while doing this.
Instead of using ifdefs to use the correct platform-specific methods, we
can just use the same pattern we use for the microseconds_delay function
which has specific implementations for each Arch CPU subdirectory.
When linking a kernel image, the actual correct and platform-specific
power-state changing methods will be called in Firmware/PowerState.cpp
file.
Since https://reviews.llvm.org/D131441, libc++ must be included before
LibC. As clang includes libc++ as one of the system includes, LibC
must be included after those, and the only correct way to do that is
to install LibC's headers into the sysroot.
Targets that don't link with LibC yet require its headers for one
reason or another must add install_libc_headers as a dependency to
ensure that the correct headers have been (re)installed into the
sysroot.
LibC/stddef.h has been dropped since the built-in stddef.h receives
a higher include priority.
In addition, string.h and wchar.h must
define __CORRECT_ISO_CPP_STRING_H_PROTO and
_LIBCPP_WCHAR_H_HAS_CONST_OVERLOADS respectively in order to tell
libc++ to not try to define methods implemented by LibC.
To ensure actual PS2 code is not tied to the i8042 code, we make them
separated in the following ways:
- PS2KeyboardDevice and PS2MouseDevice classes are no longer inheriting
from the IRQHandler class. Instead we have specific IRQHandler derived
class for the i8042 controller implementation, which is used to ensure
that we don't end up mixing PS2 code with low-level interrupt handling
functionality. In the future this means that we could add a driver for
other PS2 controllers that might have only one interrupt handler but
multiple PS2 devices are attached, therefore, making it easier to put
the right propagation flow from the controller driver all the way to
the HID core code.
- A simple abstraction layer is added between the PS2 command set which
devices could use and the actual implementation low-level commands.
This means that the code in PS2MouseDevice and PS2KeyboardDevice
classes is no longer tied to i8042 implementation-specific commands,
so now these objects could send PS2 commands to their PS2 controller
and get a PS2Response which abstracts the given response too.
All code that is related to PC BIOS should not be in the Kernel/Firmware
directory as this directory is for abstracted and platform-agnostic code
like ACPI (and device tree parsing in the future).
This fixes a problem with the aarch64 architecure, as these machines
don't have any PC-BIOS in them so actually trying to access these memory
locations (EBDA, BIOS ROM) does not make any sense, as they're specific
to x86 machines only.
This code is very x86-specific, because Intel introduced the actual
MultiProcessor specification back in 1993, qouted here as a proof:
"The MP specification covers PC/AT-compatible MP platform designs based
on Intel processor architectures and Advanced Programmable Interrupt
Controller (APIC) architectures"
Most of the ACPI static parsing methods (methods that can be called
without initializing a full AML parser) are not tied to any specific
platform or CPU architecture.
The only method that is platform-specific is the one that finds the RSDP
structure. Thus, each CPU architecture/platform needs to implement it.
This means that now aarch64 can implement its own method to find the
ACPI RSDP structure, which would be hooked into the rest of the ACPI
code elegantly, but for now I just added a FIXME and that method returns
empty value of Optional<PhysicalAddress>.
Like the HID, Audio and Storage subsystem, the Graphics subsystem (which
handles GPUs technically) exposes unix device files (typically in /dev).
To ensure consistency across the repository, move all related files to a
new directory under Kernel/Devices called "GPU".
Also remove the redundant "GPU" word from the VirtIO driver directory,
and the word "Graphics" from GraphicsManagement.{h,cpp} filenames.
The implemented cloning mechanism should be sound:
- If a PartitionTable is passed a File with
ShouldCloseFileDescriptor::Yes, then it will keep it alive until the
PartitionTable is destroyed.
- If a PartitionTable is passed a File with
ShouldCloseFileDescriptor::No, then the caller has to ensure that the
file descriptor remains alive.
If the caller is EBRPartitionTable, the same consideration holds.
If the caller is PartitionEditor::PartitionModel, this is satisfied by
keeping an OwnPtr<Core::File> around which is the originally opened
file.
Therefore, we never leak any fds, and never access a Core::File or fd
after destroying it.
This has KString, KBuffer, DoubleBuffer, KBufferBuilder, IOWindow,
UserOrKernelBuffer and ScopedCritical classes being moved to the
Kernel/Library subdirectory.
Also, move the panic and assertions handling code to that directory.
The Storage subsystem, like the Audio and HID subsystems, exposes Unix
device files (for example, in the /dev directory). To ensure consistency
across the repository, we should make the Storage subsystem to reside in
the Kernel/Devices directory like the two other mentioned subsystems.
While the PL011-based UART0 is currently reserved for the kernel
console, UART1 is free to be exposed to the userspace as `/dev/ttyS0`.
This will be used as the stdout of `run-tests-and-shutdown.sh` when
testing the AArch64 kernel.
The Raspberry Pi hardware doesn't support a proper software-initiated
shutdown, so this instead uses the watchdog to reboot to a special
partition which the firmware interprets as an immediate halt on
shutdown. When running under Qemu, this causes the emulator to exit.
We now have everything in the AArch64 kernel to be able to use the full
`__panic` implementation, so we can share the code with x86-64.
I have kept `__assertion_failed` separate for now, as the x86-64 version
directly executes inline assembly, thus `Kernel/Arch/aarch64/Panic.cpp`
could not be removed.
This logo was actually used as a first sign of life in the very early
days of the aarch64 port.
Now that we boot into the graphical mode of the system just fine there's
no need to keep this.
PCIIRQHandler is a generic IRQ handler that the device driver can
inherit to use either Pin or MSI(x) based interrupt mechanism.
The PCIIRQHandler can do what the existing IRQHandler can do for pin
based interrupts but also deal with MSI based interrupts. We can
hopefully convert all the PCI based devices to use this handler so that
MSI(x) can be used.
MSIx table entry is used to program interrupt vectors and it is
architecture specific. Add helper functions declaration in
Arch/PCIMSI.h. The definition of the function is placed in the
respective arch specific code.
Some hardware/software configurations crash KVM as soon as we try to
start Serenity. The exact cause is currently unknown, so just fully
revert it for now.
This reverts commit 897c4e5145.
The new baked image is a Prekernel and a Kernel baked together now, so
essentially we no longer need to pass the Prekernel as -kernel and the
actual kernel image as -initrd to QEMU, leaving the option to pass an
actual initrd or initramfs module later on with multiboot.