This adds a test for the code added in #23696.
I created this file using `jbig2` (see below for details), but as
usual it required a bunch of changes to it to make it actually produce
spec-compliant output. See the PR adding this image for my local diff.
I created the test image file by running this shell script with
`jbig2` tweaked as described above:
#!/bin/bash
set -eu
S=Tests/LibGfx/test-inputs/bmp/bitmap.bmp
# See make-symbol-jbig.sh (the script in #23659) for the general
# setup and some comments. Note that the symbol section here only
# has 3 symbols, instead of 4 over there.
#
# `-RefID` takes 6 arguments:
# 1. The symbol ID of the base symbol (like after an `-ID`)
# 2. A bmp file that the base symbol gets refined to
# 3. y, x (like after an `-ID`)
# 4. dx, dy (note swapped order to previous item)
#
# We also explicitly set refinement adaptive pixels, because the
# default adaptive refinement pixels aren't the nominal pixels from
# the spec.
cat << EOF > jbig2-symbol-textrefine.ini
-sym -Seg 1
-sym -file -numClass -HeightClass 3 -WidthClass 1
-sym -file -numSymbol 3
-sym -file -Height 250
-sym -file -Width 120 -Simple 0 mouth-1bpp.bmp
-sym -file -EndOfHeightClass
-sym -file -Height 100
-sym -file -Width 100 -Simple 1 nose-1bpp.bmp
-sym -file -EndOfHeightClass
-sym -file -Height 30
-sym -file -Width 30 -Simple 2 top_eye-1bpp.bmp
-sym -file -EndOfHeightClass
-sym -Param -Huff_DH 0
-sym -Param -Huff_DW 0
-txt -Seg 2
-txt -Param -numInst 4
-ID 2 108 50 -RefID 2 bottom_eye-1bpp.bmp 265 60 0 0
-ID 1 100 135 -ID 0 70 232
-txt -Param -RefCorner 1
-txt -Param -Xlocation 0
-txt -Param -Ylocation 0
-txt -Param -W 399
-txt -Param -H 400
-txt -Param -rATX1 -1
-txt -Param -rATY1 -1
-txt -Param -rATX2 -1
-txt -Param -rATY2 -1
EOF
J=$HOME/Downloads/T-REC-T.88-201808-I\!\!SOFT-ZST-E/Software
J=$J/JBIG2_SampleSoftware-A20180829/source/jbig2
$J -i "${S%.bmp}" -f bmp -o symbol-textrefine -F jb2 -ini \
jbig2-symbol-textrefine.ini
...but only as long as REFAGGNINST == 1. That's enough for 0000337.pdf.
Except that it also needs GRTEMPLATE=1 support in the generic
refinement region decoding procedure, so no behaivor change yet.
...instead of a lambda that checks the template on every call.
Doesn't make a performance difference locally, but seems maybe nicer?
No behavior change.
Template 2 is needed by some symbols in 0000372.pdf page 11 and
0000857.pdf pages 1-4. Implement the others too while here. (The
mentioned pages in those two PDFs also use the "end of stripe" segment,
so they still don't render yet.
We still don't support EXTTEMPLATE.
Instead of fetching a generic set of metrics for each glyph, only fetch
the advance when that's all we need.
This is extremely hot in LibWeb text layout, where it makes a nice dent.
Although it has some interesting properties, SipHash is brutally slow
compared to our previous hash function. Since its introduction, it has
been highly visible in every profile of doing anything interesting with
LibJS or LibWeb.
By switching back, we gain a 10x speedup for 32-bit hashes, and "only"
a 3x speedup for 64-bit hashes.
This comes out to roughly 1.10x faster HashTable insertion, and roughly
2.25x faster HashTable lookup. Hashing is no longer at the top of
profiles and everything runs measurably faster.
For security-sensitive hash tables with user-controlled inputs, we can
opt into SipHash selectively on a case-by-case basis. The vast majority
of our uses don't fit that description though.
...and make text_region_decoding_procedure() call it.
generic_refinement_region_decoding_procedure() still just returns
"unimplemented", so no behavior change yet.
Text segments using refinement are still rejected later, by
text_region_decoding_procedure(). But we deserialize the input data now,
and the error when this feature is used is now slightly different.
This was added in commit f2663f477f as a
partial implementation of what is now LibWeb's forgiving Base64 decoder.
All use cases within LibWeb that require whitespace skipping now use
that implementation instead.
Removing this feature from AK allows us to know the exact output size of
a decoded Base64 string. We can still trim whitespace at the start and
end of the input though; for example, this is useful when reading from a
file that may have a newline at the end of the file.
Caught by clang-format-17. Note that clang-format-16 is fine with this
as well (it leaves the const placement alone), it just doesn't perform
the formatting to east-const itself.
This is a fetching AO and is only used by LibWeb in the context of fetch
tasks. Move it to LibWeb with other fetch methods.
The main reason for this is that it requires the use of other LibWeb AOs
such as the forgiving Base64 decoder and MIME sniffing. These AOs aren't
available within LibURL.
Fixes delayed repainting in the following case:
1. Style or layout invalidation triggers html event loop processing.
2. Event loop processing does nothing because there is no rendering
opportunity.
3. Style or layout change won't be reflected until something else
triggers event loop processing
If we already have a FlyString instantiated for the given string,
look that up and return it instead of making a temporary String just to
use as a key into the FlyString table.
Before this change, the global FlyString table looked like this:
HashMap<StringView, Detail::StringBase>
After this change, we have:
HashTable<Detail::StringData const*, FlyStringTableHashTraits>
The custom hash traits are used to extract the stored hash from
StringData which avoids having to rehash the StringView repeatedly like
we did before.
This necessitated a handful of smaller changes to make it work.