Instead of using C-arrays, and manually counting their lengths, use
AK::Array. And pass these arrays around as spans, instead of as pointer-
and-length pairs.
RFC9293 states that a closed socket should reply to all non-RST
packets with an RST. This change implements this behaviour as
specified in section 3.5.2 in bullet point 1.
According to RFC 9293 Section 3.6.1. Half-Closed Connections, we should
still accept incoming packets in the FinWait2 state. Additionally, we
didn't handle the FIN+ACK case. We should handle this the same we
handle the FIN flag. The ACK is only added to signify successful
reception of the last packet.
The specification uses awkward numbering, marking the first byte as 7,
and the last one as 0, which caused me to misunderstand their ordering,
and use the last byte's address as the first one, and so on.
This should allow us to eventually properly saturate high-bandwidth
network links when using TCP, once other nonoptimal parts of our
network stack are improved.
Instead of lying and claiming we always have space left in our receive
buffer, actually report the available space.
While this doesn't really affect network-bound workloads, it makes a
world of difference in cpu/disk-bound ones, like git clones. Resulting
in a considerable speed-up, and in some cases making them work at all.
(instead of the sender side hanging up the connection due to timeouts)
Previously we would incorrectly handle the (somewhat uncommon) case of
binding and then separately connecting a tcp socket to a server, as we
would register the socket during the manual bind(2) in the sockets by
tuple table, but our effective tuple would then change as the result of
the connect updating our target peer address. This would result in the
the entry not being removed from the table on destruction, which could
lead to a UAF.
We now make sure to update the table entry if needed during connects.
POSIX (rightfully so) specifies that the sendto address argument is
ignored in connection-oriented protocols.
The TCPSocket also assumed the peer address may not change post-connect
and would trigger a UAF in sockets_by_tuple() when it did.
POSIX requires that broadcast sends will only be allowed if the
SO_BROADCAST socket option was set on the socket.
Also, broadcast sends to protocols that do not support broadcast (like
TCP), should always fail.
The networking subsystem currently assumes all adapters are Ethernet
adapters, including the LoopbackAdapter, so all packets are pre-pended
with an Ethernet Frame header. Since the MTU must not include any
overhead added by the data-link (Ethernet in this case) or physical
layers, we need to subtract it from the MTU.
This fixes a kernel panic which occurs when sending a packet that is at
least 65523 bytes long through the loopback adapter, which results in
the kernel "receiving" a packet which is larger than the support MTU
out the other end. (As the actual final size was increased by the
addition of the ethernet frame header)
It seems like the current implementation returns 0 in case we do not
have enough data for a whole packet yet. The 0 value gets propagated
to the return value of the syscall which according to the spec
should return non-zero values for non-errors cases. This causes panic,
as there is a VERIFY guard checking that more than > 0 bytes are
written if no error has occurred.
Simplify core methods in the VirtIO bus handling code by ensuring proper
error propagation. This makes initialization of queues, handling changes
in device configuration, and other core patterns more readable as well.
It also allows us to remove the obnoxious pattern of checking for
boolean "success" and if we get false answer then returning an actual
errno code.
The VirtIO specification defines many types of devices with different
purposes, and it also defines 3 possible transport mediums where devices
could be connected to the host machine.
We only care about the PCIe transport, but this commit puts the actual
foundations for supporting the lean MMIO transport too in the future.
To ensure things are kept abstracted but still functional, the VirtIO
transport code is responsible for what is deemed as related to an actual
transport type - allocation of interrupt handlers and tinkering with low
level transport-related registers, etc.
This is an initial implementation, about as basic as intended by the
RFC, and not configurable from userspace at the moment. It should reduce
the amount of low-sized packets sent, reducing overhead and thereby
network traffic.
Using the kernel stack is preferable, especially when the examined
strings should be limited to a reasonable length.
This is a small improvement, because if we don't actually move these
strings then we don't need to own heap allocations for them during the
syscall handler function scope.
In addition to that, some kernel strings are known to be limited, like
the hostname string, for these strings we also can use FixedStringBuffer
to store and copy to and from these buffers, without using any heap
allocations at all.
Instead, use the FixedCharBuffer class to ensure we always use a static
buffer storage for these names. This ensures that if a Process or a
Thread were created, there's a guarantee that setting a new name will
never fail, as only copying of strings should be done to that static
storage.
The limits which are set are 32 characters for processes' names and 64
characters for thread names - this is because threads' names could be
more verbose than processes' names.
Currently, ephemeral port allocation is handled by the
allocate_local_port_if_needed() and protocol_allocate_local_port()
methods. Actually binding the socket to an address (which means
inserting the socket/address pair into a global map) is performed either
in protocol_allocate_local_port() (for ephemeral ports) or in
protocol_listen() (for non-ephemeral ports); the latter will fail with
EADDRINUSE if the address is already used by an existing pair present in
the map.
There used to be a bug where for listen() without an explicit bind(),
the port allocation would conflict with itself: first an ephemeral port
would get allocated and inserted into the map, and then
protocol_listen() would check again for the port being free, find the
just-created map entry, and error out. This was fixed in commit
01e5af487f by passing an additional flag
did_allocate_port into protocol_listen() which specifies whether the
port was just allocated, and skipping the check in protocol_listen() if
the flag is set.
However, this only helps if the socket is bound to an ephemeral port
inside of this very listen() call. But calling bind(sin_port = 0) from
userspace should succeed and bind to an allocated ephemeral port, in the
same was as using an unbound socket for connect() does. The port number
can then be retrieved from userspace by calling getsockname (), and it
should be possible to either connect() or listen() on this socket,
keeping the allocated port number. Also, calling bind() when already
bound (either explicitly or implicitly) should always result in EINVAL.
To untangle this, introduce an explicit m_bound state in IPv4Socket,
just like LocalSocket has already. Once a socket is bound, further
attempt to bind it fail. Some operations cause the socket to implicitly
get bound to an (ephemeral) address; this is implemented by the new
ensure_bound() method. The protocol_allocate_local_port() method is
gone; it is now up to a protocol to assign a port to the socket inside
protocol_bind() if it finds that the socket has local_port() == 0.
protocol_bind() is now called in more cases, such as inside listen() if
the socket wasn't bound before that.
Since we never check a kernel process's state like a userland process,
it's possible for a kernel process to ignore the fact that someone is
trying to kill it, and continue running. This is not desireable if we
want to properly shutdown all processes, including Kernel ones.
During receive_tcp_packet(), we now set m_send_window_size for the
socket if it is different from the default.
This removes one FIXME from TCPSocket.h.
This has KString, KBuffer, DoubleBuffer, KBufferBuilder, IOWindow,
UserOrKernelBuffer and ScopedCritical classes being moved to the
Kernel/Library subdirectory.
Also, move the panic and assertions handling code to that directory.
"Wherever applicable" = most places, actually :^), especially for
networking and filesystem timestamps.
This includes changes to unzip, which uses DOSPackedTime, since that is
changed for the FAT file systems.
That's what this class really is; in fact that's what the first line of
the comment says it is.
This commit does not rename the main files, since those will contain
other time-related classes in a little bit.
There is a big mix of LockRefPtrs all over the Networking subsystem, as
well as lots of room for improvements with our locking patterns, which
this commit will not pursue, but will give a good start for such work.
To deal with this situation, we change the following things:
- Creating instances of NetworkAdapter should always yield a non-locking
NonnullRefPtr. Acquiring an instance from the NetworkingManagement
should give a simple RefPtr,as giving LockRefPtr does not really
protect from concurrency problems in such case.
- Since NetworkingManagement works with normal RefPtrs we should
protect all instances of RefPtr<NetworkAdapter> with SpinlockProtected
to ensure references are gone unexpectedly.
- Protect the so_error class member with a proper spinlock. This happens
to be important because the clear_so_error() method lacked any proper
locking measures. It also helps preventing a possible TOCTOU when we
might do a more fine-grained locking in the Socket code, so this could
be definitely a start for this.
- Change unnecessary LockRefPtr<PacketWithTimestamp> in the structure
of OutgoingPacket to a simple RefPtr<PacketWithTimestamp> as the whole
list should be MutexProtected.
- Instead of taking the first new thread as an out-parameter, we now
bundle the process and its first thread in a struct and use that
as the return value.
- Make all Process factory functions return ErrorOr. Use this to convert
some places to more TRY().
- Drop the "try_" prefix on Process factory functions.
This was mostly straightforward, as all the storage locations are
guarded by some related mutex.
The use of old-school associated mutexes instead of MutexProtected
is unfortunate, but the process to modernize such code is ongoing.