leo/README.md
2020-06-02 16:16:41 -07:00

514 lines
10 KiB
Markdown

# The Leo Programming Language
* Programs should be formatted:
1. Import definitions
2. Circuit definitions
3. Function definitions
## Mutability
* All defined variables in Leo are immutable by default.
* Variables can be made mutable with the `mut` keyword.
```rust
function main() {
let a = 0u32;
//a = 1 <- Will fail
let mut b = 0u32;
b = 1; // <- Ok
}
```
## Booleans
Explicit types are optional.
```rust
function main() -> bool {
let a: bool = true || false;
let b = false && false;
let c = 1u32 == 1u32;
return a
}
```
## Numbers
* The definition of a number must include an explict type.
* After assignment, you can choose to explicitly add the type or let the compiler interpret implicitly.
* Type casting is not supported.
* Comparators are not supported.
### Integers
Supported integer types: `u8`, `u16`, `u32`, `u64`, `u128`
```rust
function main() -> u32 {
let a = 2u32; // explicit type
let a: u32 = 1 + 1; // explicit type
let b = a - 1; // implicit type
let c = b * 4;
let d = c / 2;
let e = d ** 3;
return e
}
```
### Field Elements
```rust
function main() -> field {
let a = 1000field; // explicit type
let a: field = 21888242871839275222246405745257275088548364400416034343698204186575808495617; // explicit type
let b = a + 1; // implicit type
let c = b - 1;
let d = c * 4;
let e = d / 2;
return e
}
```
### Affine Points
The set of affine points on the elliptic curve passed into the leo compiler forms a group.
Leo supports this set as a primitive data type.
```rust
function main() -> group {
let a = 1000group; // explicit type
let a = (21888242871839275222246405745257275088548364400416034343698204186575808495617, 21888242871839275222246405745257275088548364400416034343698204186575808495617)group; // explicit type
let b = a + 0; // implicit type
let c = b - 0;
return c
}
```
### Operator Assignment Statements
```rust
function main() -> u32 {
let mut a = 10;
a += 5;
a -= 10;
a *= 5;
a /= 5;
a **= 2;
return a
}
```
## Arrays
Leo supports static arrays with fixed length.
```rust
function main() -> u32[2] {
// initialize an integer array with integer values
let mut a: u32[3] = [1, 2, 3];
// set a mutable member to a value
a[2] = 4;
// initialize an array of 4 values all equal to 42
let b = [42u8; 4];
// initialize an array of 5 values copying all elements of b using a spread
let c = [1, ...b];
// initialize an array copying a slice from `c`
let d = c[1..3];
// initialize a field array
let e = [5field; 2];
// initialize a boolean array
let f = [true, false || true, true];
return d
}
```
### Multidimensional Arrays
```rust
function main() -> u32[3][2] {
let m = [[0u32, 0u32], [0u32, 0u32]];
let m: u32[3][2] = [[0; 3]; 2];
return m
}
```
## Conditionals
### If Else Ternary Expression
```rust
function main() -> u32 {
let y = if 3==3 ? 1 : 5;
return y
}
```
### If Else Conditional Statement
** **Experimental** **
The current constraint system is not optimized for statement branching. Please use the ternary expression above until this feature is stable.
```rust
function main(a: private bool, b: private bool) -> u32 {
let mut res = 0u32;
if (a) {
res = 1;
} else if (b) {
res = 2;
} else {
res = 3;
}
return res
}
```
### For loop
```rust
function main() -> fe {
let mut a = 1field;
for i in 0..4 {
a = a + 1;
}
return a
}
```
## Functions
```rust
function test1(a : u32) -> u32 {
return a + 1
}
function test2(b: fe) -> field {
return b * 2field
}
function test3(c: bool) -> bool {
return c && true
}
function main() -> u32 {
return test1(5)
}
```
### Function Scope
```rust
function foo() -> field {
// return myGlobal <- not allowed
return 42field
}
function main() -> field {
let myGlobal = 42field;
return foo()
}
```
### Multiple returns
Functions can return tuples whose types are specified in the function signature.
```rust
function test() -> (u32, u32[2]) {
return 1, [2, 3]
}
function main() -> u32[3] {
let (a, b) = test();
// (a, u32[2] b) = test() <- explicit type also works
return [a, ...b]
}
```
### Main function inputs
Main function inputs are allocated as public or private variables in the program's constaint system.
```rust
function main(a: private field) -> field {
return a
}
```
```rust
function main(a: public field) -> field {
return a
}
```
Private by default. Below `a` is implicitly private.
```rust
function main(a: field) -> field {
return a
}
```
Function inputs are passed by value.
```rust
function test(mut a: u32) {
a = 0;
}
function main() -> u32 {
let a = 1;
test(a);
return a // <- returns 1
}
```
## Circuits
Circuits in Leo are similar to classes in object oriented langauges. Circuits are defined above functions in a Leo program. Circuits can have one or more members.
Members can be defined as fields which hold primitive values
```rust
circuit Point {
x: u32
y: u32
}
function main() -> u32 {
let p = Point {x: 1, y: 0};
return p.x
}
```
Members can also be defined as functions.
```rust
circuit Circ {
function echo(x: u32) -> u32 {
return x
}
}
function main() -> u32 {
let c = Circ { };
return c.echo(1u32)
}
```
Circuit functions can be made static, enabling them to be called without instantiation.
```rust
circuit Circ {
static function echo(x: u32) -> u32 {
return x
}
}
function main() -> u32 {
return Circ::echo(1u32)
}
```
The `Self` keyword is supported in circuit functions.
```rust
circuit Circ {
b: bool
static function new() -> Self {
return Self { b: true }
}
}
function main() -> Circ {
let c = Circ::new();
return c.b
}
```
## Imports
Both struct and function imports are supported.
import all: `*`
import alias: `symbol as alias`
`src/simple_import.leo`
```rust
circuit Point {
x: u32
y: u32
}
function test() -> (u32, u32[2]) {
return 1, [2, 3]
}
```
`src/simple.leo`
```rust
from "./simple_import" import {
Point as Foo,
test
};
// from "./simple_import" import *
function main() -> (u32[3]) {
let p = Foo { x: 1, y: 2};
let (a, b) = test();
return [a, ...b]
}
```
## Constraints
### Assert Equals
This will enforce that the two values are equal in the constraint system.
```rust
function main() {
assert_eq(45, 45);
assert_eq(2fe, 2fe);
assert_eq(true, true);
}
```
## Testing
Use the `test` keyword to add tests to a leo program. Tests must have 0 function inputs and 0 function returns.
```rust
function main(a: u32) -> u32 {
return a
}
test function expect_pass() {
let a = 1u32;
let res = main(a);
assert_eq!(res, 1u32);
}
test function expect_fail() {
assert_eq!(1u8, 0u8);
}
```
# Leo CLI
## Develop
### `leo new`
To setup a new package, run:
```
leo new {$NAME}
```
This will create a new directory with a given package name. The new package will have a directory structure as follows:
```
- inputs # Your program inputs
- outputs # Your program outputs
- src
- lib.leo # Your program library
- main.leo # Your program
- tests
- test.leo # Your program tests
- Leo.toml # Your program manifest
```
### `leo init`
To initialize an existing directory, run:
```
leo init
```
This will initialize the current directory with the same package directory setup.
### `leo build`
To compile your program and verify that it builds properly, run:
```
leo build
```
### `leo test`
To execute unit tests on your program, run:
```
leo test
```
The results of test compilation and the constraint system will be printed:
```
INFO leo Running 2 tests
INFO leo test language::expect_pass compiled. Constraint system satisfied: true
ERROR leo test language::expect_fail errored: Assertion 1u8 == 0u8 failed
```
## Run
### `leo setup`
To perform the program setup, producing a proving key and verification key, run:
```
leo setup
```
Leo uses cryptographic randomness from your machine to perform the setup. The proving key and verification key are stored in the `target` directory as `.leo.pk` and `.leo.vk`:
```
{$LIBRARY}/target/{$PROGRAM}.leo.pk
{$LIBRARY}/target/{$PROGRAM}.leo.vk
```
### `leo prove`
To execute the program and produce an execution proof, run:
```
leo prove
```
Leo starts by checking the `target` directory for an existing `.leo.pk` file. If it doesn't exist, it will proceed to run `leo setup` and then continue.
Once again, Leo uses cryptographic randomness from your machine to produce the proof. The proof is stored in the `target` directory as `.leo.proof`:
```
{$LIBRARY}/target/{$PROGRAM}.leo.proof
```
### `leo verify`
To verify the program proof, run:
```
leo verify
```
Leo starts by checking the `target` directory for an existing `.leo.proof` file. If it doesn't exist, it will proceed to run `leo prove` and then continue.
After the verifier is run, Leo will output either `true` or `false` based on the verification.
## Remote
To use remote compilation features, start by authentication with:
```
leo login
```
You will proceed to authenticate using your username and password. Next, Leo will parse your `Leo.toml` file for `remote = True` to confirm whether remote compilation is enabled.
If remote compilation is enabled, Leo syncs your workspace so when you run `leo build`, `leo test`, `leo setup` and `leo prove`, your program will run the program setup and execution performantly on remote machines.
This speeds up the testing cycle and helps the developer to iterate significantly faster.
## Publish
To package your program as a gadget and publish it online, run:
```
leo publish
```
Leo will proceed to snapshot your directory and upload your directory to the circuit manager. Leo will verify that `leo build` succeeds and that `leo test` passes without error.
If your gadget name has already been taken, `leo publish` will fail.
## Deploy
To deploy your program to Aleo, run:
```
leo deploy
```
# Install
To install Leo from source, in the root directory of the repository, run:
```
cargo install --path .
```
## TODO
- Change `target` directory to some other directory to avoid collision.
- Figure out how `leo prove` should take in assignments.
- Come up with a serialization format for `.leo.pk`, `.leo.vk`, and `.leo.proof`.