sygil-webui/ldm/data/vqa_dataset.py

107 lines
3.4 KiB
Python
Raw Permalink Normal View History

import os
import json
from PIL import Image
import torch
from torch.utils.data import Dataset
from data.utils import pre_question
from torchvision.datasets.utils import download_url
class vqa_dataset(Dataset):
def __init__(
self, transform, ann_root, vqa_root, vg_root, train_files=[], split="train"
):
self.split = split
self.transform = transform
self.vqa_root = vqa_root
self.vg_root = vg_root
if split == "train":
urls = {
"vqa_train": "https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_train.json",
"vqa_val": "https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_val.json",
"vg_qa": "https://storage.googleapis.com/sfr-vision-language-research/datasets/vg_qa.json",
}
self.annotation = []
for f in train_files:
download_url(urls[f], ann_root)
self.annotation += json.load(
open(os.path.join(ann_root, "%s.json" % f), "r")
)
else:
download_url(
"https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_test.json",
ann_root,
)
self.annotation = json.load(
open(os.path.join(ann_root, "vqa_test.json"), "r")
)
download_url(
"https://storage.googleapis.com/sfr-vision-language-research/datasets/answer_list.json",
ann_root,
)
self.answer_list = json.load(
open(os.path.join(ann_root, "answer_list.json"), "r")
)
def __len__(self):
return len(self.annotation)
def __getitem__(self, index):
ann = self.annotation[index]
if ann["dataset"] == "vqa":
image_path = os.path.join(self.vqa_root, ann["image"])
elif ann["dataset"] == "vg":
image_path = os.path.join(self.vg_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.transform(image)
if self.split == "test":
question = pre_question(ann["question"])
question_id = ann["question_id"]
return image, question, question_id
elif self.split == "train":
question = pre_question(ann["question"])
if ann["dataset"] == "vqa":
answer_weight = {}
for answer in ann["answer"]:
if answer in answer_weight.keys():
answer_weight[answer] += 1 / len(ann["answer"])
else:
answer_weight[answer] = 1 / len(ann["answer"])
answers = list(answer_weight.keys())
weights = list(answer_weight.values())
elif ann["dataset"] == "vg":
answers = [ann["answer"]]
weights = [0.2]
return image, question, answers, weights
def vqa_collate_fn(batch):
image_list, question_list, answer_list, weight_list, n = [], [], [], [], []
for image, question, answer, weights in batch:
image_list.append(image)
question_list.append(question)
weight_list += weights
answer_list += answer
n.append(len(answer))
return (
torch.stack(image_list, dim=0),
question_list,
answer_list,
torch.Tensor(weight_list),
n,
)