pub struct Analytics {Show 16 fields
pub road_thruput: TimeSeriesCount<RoadID>,
pub intersection_thruput: TimeSeriesCount<IntersectionID>,
pub traffic_signal_thruput: TimeSeriesCount<CompressedMovementID>,
pub demand: BTreeMap<MovementID, usize>,
pub bus_arrivals: Vec<(Time, CarID, TransitRouteID, TransitStopID)>,
pub passengers_boarding: BTreeMap<TransitStopID, Vec<(Time, TransitRouteID, Duration)>>,
pub passengers_alighting: BTreeMap<TransitStopID, Vec<(Time, TransitRouteID)>>,
pub started_trips: BTreeMap<TripID, Time>,
pub finished_trips: Vec<(Time, TripID, TripMode, Option<Duration>)>,
pub problems_per_trip: BTreeMap<TripID, Vec<(Time, Problem)>>,
pub trip_log: Vec<(Time, TripID, Option<PathRequest>, TripPhaseType)>,
pub intersection_delays: BTreeMap<IntersectionID, Vec<(u8, Time, Duration, AgentType)>>,
pub parking_lane_changes: BTreeMap<LaneID, Vec<(Time, bool)>>,
pub parking_lot_changes: BTreeMap<ParkingLotID, Vec<(Time, bool)>>,
pub(crate) alerts: Vec<(Time, AlertLocation, String)>,
record_anything: bool,
}
Expand description
As a simulation runs, different pieces emit Events. The Analytics object listens to these, organizing and storing some information from them. The UI queries Analytics to draw time-series and display statistics.
For all maps whose weekday scenario fully runs, the game’s release includes some “prebaked results.” These are just serialized Analytics after running the simulation on a map without any edits for the full day. This is the basis of A/B testing – the player can edit the map, start running the simulation, and compare the live Analytics to the prebaked baseline Analytics.
Fields
road_thruput: TimeSeriesCount<RoadID>
intersection_thruput: TimeSeriesCount<IntersectionID>
traffic_signal_thruput: TimeSeriesCount<CompressedMovementID>
demand: BTreeMap<MovementID, usize>
Most fields in Analytics are cumulative over time, but this is just for the current moment in time.
bus_arrivals: Vec<(Time, CarID, TransitRouteID, TransitStopID)>
passengers_boarding: BTreeMap<TransitStopID, Vec<(Time, TransitRouteID, Duration)>>
For each passenger boarding, how long did they wait at the stop?
passengers_alighting: BTreeMap<TransitStopID, Vec<(Time, TransitRouteID)>>
started_trips: BTreeMap<TripID, Time>
finished_trips: Vec<(Time, TripID, TripMode, Option<Duration>)>
Finish time, ID, mode, trip duration if successful (or None if cancelled)
problems_per_trip: BTreeMap<TripID, Vec<(Time, Problem)>>
Record different problems that each trip encounters.
trip_log: Vec<(Time, TripID, Option<PathRequest>, TripPhaseType)>
intersection_delays: BTreeMap<IntersectionID, Vec<(u8, Time, Duration, AgentType)>>
Only for traffic signals. The u8 is the movement index from a CompressedMovementID.
parking_lane_changes: BTreeMap<LaneID, Vec<(Time, bool)>>
Per parking lane or lot, when does a spot become filled (true) or free (false)
parking_lot_changes: BTreeMap<ParkingLotID, Vec<(Time, bool)>>
alerts: Vec<(Time, AlertLocation, String)>
record_anything: bool
For benchmarking, we may want to disable collecting data.
Implementations
sourceimpl Analytics
impl Analytics
pub fn new(record_anything: bool) -> Analytics
pub fn event(&mut self, ev: Event, time: Time, map: &Map)
pub fn record_demand(&mut self, path: &Path, map: &Map)
sourcepub fn finished_trip_time(&self, trip: TripID) -> Option<Duration>
pub fn finished_trip_time(&self, trip: TripID) -> Option<Duration>
Ignores the current time. Returns None for cancelled trips.
sourcepub fn both_finished_trips(
&self,
now: Time,
before: &Analytics
) -> Vec<(TripID, Duration, Duration, TripMode)>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
pub fn both_finished_trips(
&self,
now: Time,
before: &Analytics
) -> Vec<(TripID, Duration, Duration, TripMode)>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
A: Allocator,
Returns pairs of trip times for finished trips in both worlds. (ID, before, after, mode)
sourcepub fn get_trip_phases(&self, trip: TripID, map: &Map) -> Vec<TripPhase>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
pub fn get_trip_phases(&self, trip: TripID, map: &Map) -> Vec<TripPhase>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
A: Allocator,
If calling on prebaked Analytics, be careful to pass in an unedited map, to match how the simulation was originally run. Otherwise the paths may be nonsense.
pub fn get_all_trip_phases(&self) -> BTreeMap<TripID, Vec<TripPhase>>
pub fn active_agents(&self, now: Time) -> Vec<(Time, usize)>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
A: Allocator,
sourcepub fn parking_lane_availability(
&self,
now: Time,
l: LaneID,
capacity: usize
) -> Vec<(Time, usize)>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
pub fn parking_lane_availability(
&self,
now: Time,
l: LaneID,
capacity: usize
) -> Vec<(Time, usize)>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
A: Allocator,
Returns the free spots over time
pub fn parking_lot_availability(
&self,
now: Time,
pl: ParkingLotID,
capacity: usize
) -> Vec<(Time, usize)>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
A: Allocator,
fn parking_spot_availability(
now: Time,
changes: &[(Time, bool)],
capacity: usize
) -> Vec<(Time, usize)>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
A: Allocator,
pub fn problems_per_intersection(
&self,
now: Time,
id: IntersectionID
) -> Vec<(ProblemType, Vec<(Time, usize)>)>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
A: Allocator,
pub fn problems_per_lane(
&self,
now: Time,
id: LaneID
) -> Vec<(ProblemType, Vec<(Time, usize)>)>ⓘNotable traits for Vec<u8, A>impl<A> Write for Vec<u8, A> where
A: Allocator,
A: Allocator,
Trait Implementations
sourceimpl<'de> Deserialize<'de> for Analytics
impl<'de> Deserialize<'de> for Analytics
sourcefn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error> where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error> where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
Auto Trait Implementations
impl RefUnwindSafe for Analytics
impl Send for Analytics
impl Sync for Analytics
impl Unpin for Analytics
impl UnwindSafe for Analytics
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcepub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
impl<T> Downcast for T where
T: Any,
impl<T> Downcast for T where
T: Any,
pub fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
pub fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
Convert Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
. Read more
pub fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
pub fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
Convert Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
. Read more
pub fn as_any(&self) -> &(dyn Any + 'static)
pub fn as_any(&self) -> &(dyn Any + 'static)
Convert &Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s. Read more
pub fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
pub fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert &mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s. Read more
sourceimpl<T> Instrument for T
impl<T> Instrument for T
sourcefn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Instruments this type with the provided Span
, returning an
Instrumented
wrapper. Read more
sourcefn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
impl<T> Same<T> for T
impl<T> Same<T> for T
type Output = T
type Output = T
Should always be Self
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcepub fn to_owned(&self) -> T
pub fn to_owned(&self) -> T
Creates owned data from borrowed data, usually by cloning. Read more
sourcepub fn clone_into(&self, target: &mut T)
pub fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more