learnxinyminutes-docs/d.html.markdown

248 lines
5.9 KiB
Markdown
Raw Normal View History

2015-06-08 05:30:16 +03:00
---
2015-06-08 05:39:01 +03:00
language: D
2015-06-08 05:30:16 +03:00
filename: learnd.d
contributors:
- ["Nick Papanastasiou", "www.nickpapanastasiou.github.io"]
lang: en
---
```c
2015-06-08 05:30:16 +03:00
// You know what's coming...
2015-06-10 18:54:16 +03:00
module hello;
2015-06-08 05:30:16 +03:00
import std.stdio;
// args is optional
void main(string[] args) {
writeln("Hello, World!");
}
2015-06-17 00:15:14 +03:00
```
2015-06-08 05:30:16 +03:00
2015-06-17 00:10:57 +03:00
If you're like me and spend way too much time on the internet, odds are you've heard
about [D](http://dlang.org/). The D programming language is a modern, general-purpose,
multi-paradigm language with support for everything from low-level features to
expressive high-level abstractions.
D is actively developed by Walter Bright and Andrei Alexandrescu, two super smart, really cool
dudes. With all that out of the way, let's look at some examples!
```c
2015-06-08 05:30:16 +03:00
import std.stdio;
void main() {
2015-06-17 00:10:57 +03:00
// Conditionals and loops work as expected.
for(int i = 0; i < 10000; i++) {
2015-06-08 05:30:16 +03:00
writeln(i);
}
auto n = 1; // use auto for type inferred variables
2015-06-17 00:10:57 +03:00
// Numeric literals can use _ as a digit seperator for clarity
2015-06-08 05:30:16 +03:00
while(n < 10_000) {
n += n;
}
do {
n -= (n / 2);
} while(n > 0);
// For and while are nice, but in D-land we prefer foreach
2015-06-10 21:07:14 +03:00
// The .. creates a continuous range, excluding the end
2015-06-17 00:10:57 +03:00
foreach(i; 1..1_000_000) {
2015-06-08 05:30:16 +03:00
if(n % 2 == 0)
writeln(i);
}
2015-06-10 21:07:14 +03:00
foreach_reverse(i; 1..int.max) {
2015-06-10 19:18:45 +03:00
if(n % 2 == 1) {
2015-06-08 05:30:16 +03:00
writeln(i);
2015-06-10 19:18:45 +03:00
} else {
2015-06-08 05:30:16 +03:00
writeln("No!");
2015-06-10 19:18:45 +03:00
}
2015-06-08 05:30:16 +03:00
}
}
2015-06-08 05:50:05 +03:00
```
2015-06-10 21:07:14 +03:00
We can define new types with `struct`, `class`, `union`, and `enum`. Structs and unions
2015-06-08 05:50:05 +03:00
are passed to functions by value (i.e. copied) and classes are passed by reference. Futhermore,
we can use templates to parameterize all of these on both types and values!
```c
2015-06-08 05:50:05 +03:00
// Here, T is a type parameter. Think <T> from C++/C#/Java
2015-06-10 18:54:16 +03:00
struct LinkedList(T) {
2015-06-08 05:50:05 +03:00
T data = null;
LinkedList!(T)* next; // The ! is used to instaniate a parameterized type. Again, think <T>
}
class BinTree(T) {
T data = null;
2015-06-10 21:07:14 +03:00
// If there is only one template parameter, we can omit parens
2015-06-08 05:50:05 +03:00
BinTree!T left;
BinTree!T right;
}
enum Day {
Sunday,
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
}
// Use alias to create abbreviations for types
alias IntList = LinkedList!int;
alias NumTree = BinTree!double;
2015-06-08 05:30:16 +03:00
2015-06-10 18:54:16 +03:00
// We can create function templates as well!
T max(T)(T a, T b) {
if(a < b)
return b;
return a;
}
2015-06-10 21:07:14 +03:00
// Use the ref keyword to ensure pass by referece.
// That is, even if a and b are value types, they
// will always be passed by reference to swap
2015-06-10 18:54:16 +03:00
void swap(T)(ref T a, ref T b) {
auto temp = a;
a = b;
2015-06-10 19:42:10 +03:00
b = temp;
2015-06-10 18:54:16 +03:00
}
// With templates, we can also parameterize on values, not just types
2015-06-10 19:21:11 +03:00
class Matrix(uint m, uint n, T = int) {
2015-06-10 18:54:16 +03:00
T[m] rows;
T[n] columns;
}
2015-06-10 19:21:11 +03:00
2015-06-17 00:10:57 +03:00
auto mat = new Matrix!(3, 3); // We've defaulted type T to int
2015-06-10 19:21:11 +03:00
2015-06-08 05:39:01 +03:00
```
2015-06-10 18:54:16 +03:00
Speaking of classes, let's talk about properties for a second. A property
is roughly a function that may act like an lvalue, so we can
have the syntax of POD structures (`structure.x = 7`) with the semantics of
getter and setter methods (`object.setX(7)`)!
2015-06-10 19:18:45 +03:00
```c
2015-06-10 19:18:45 +03:00
// Consider a class parameterized on a types T, U
2015-06-17 00:15:14 +03:00
class MyClass(T, U) {
T _data;
U _other;
}
2015-06-10 21:07:14 +03:00
// And "getter" and "setter" methods like so
2015-06-10 19:18:45 +03:00
class MyClass(T, U) {
T _data;
U _other;
// Constructors are always named `this`
this(T t, U u) {
data = t;
other = u;
}
// getters
@property T data() {
return _data;
}
@property U other() {
return _other;
}
// setters
@property void data(T t) {
_data = t;
}
@property void other(U u) {
_other = u;
}
}
// And we use them in this manner
void main() {
auto mc = MyClass!(int, string);
mc.data = 7;
mc.other = "seven";
2015-06-17 00:10:57 +03:00
2015-06-10 19:18:45 +03:00
writeln(mc.data);
writeln(mc.other);
}
```
2015-06-17 00:10:57 +03:00
With properties, we can add any amount of logic to
2015-06-10 19:18:45 +03:00
our getter and setter methods, and keep the clean syntax of
accessing members directly!
2015-06-10 19:42:10 +03:00
2015-06-10 21:07:14 +03:00
Other object-oriented goodies at our disposal
2015-06-10 19:42:10 +03:00
include `interface`s, `abstract class`es,
2015-06-17 00:10:57 +03:00
and `override`ing methods. D does inheritance just like Java:
Extend one class, implement as many interfaces as you please.
2015-06-10 19:42:10 +03:00
We've seen D's OOP facilities, but let's switch gears. D offers
functional programming with first-class functions, `pure`
functions, and immutable data. In addition, all of your favorite
functional algorithms (map, filter, reduce and friends) can be
found in the wonderful `std.algorithm` module!
```c
2015-06-10 21:07:14 +03:00
import std.algorithm : map, filter, reduce;
import std.range : iota; // builds an end-exclusive range
2015-06-10 19:42:10 +03:00
void main() {
// We want to print the sum of a list of squares of even ints
// from 1 to 100. Easy!
2015-06-10 21:07:14 +03:00
2015-06-10 19:42:10 +03:00
// Just pass lambda expressions as template parameters!
2015-06-10 21:13:38 +03:00
// You can pass any old function you like, but lambdas are convenient here.
2015-06-10 19:42:10 +03:00
auto num = iota(1, 101).filter!(x => x % 2 == 0)
.map!(y => y ^^ 2)
.reduce!((a, b) => a + b);
writeln(num);
}
```
Notice how we got to build a nice Haskellian pipeline to compute num?
That's thanks to a D innovation know as Uniform Function Call Syntax.
With UFCS, we can choose whether to write a function call as a method
2015-06-17 00:46:58 +03:00
or free function call! Walter wrote a nice article on this
[here.](http://www.drdobbs.com/cpp/uniform-function-call-syntax/232700394)
In short, you can call functions whose first parameter
2015-06-17 00:15:14 +03:00
is of some type A on any expression of type A as a method.
2015-06-10 19:42:10 +03:00
2015-06-17 00:46:58 +03:00
I like parallelism. Anyone else like parallelism? Sure you do. Let's do some!
2015-06-10 19:42:10 +03:00
```c
2015-06-17 00:46:58 +03:00
import std.stdio;
import std.parallelism : parallel;
import std.math : sqrt;
void main() {
// We want take the square root every number in our array,
// and take advantage of as many cores as we have available.
auto arr = new double[1_000_000];
// Use an index, and an array element by referece,
// and just call parallel on the array!
foreach(i, ref elem; parallel(arr)) {
ref = sqrt(i + 1.0);
}
}
```