learnxinyminutes-docs/kotlin.html.markdown
Paolo Furini 161edb1f6e [kotlin/en] Add "if" usage as an expression (#2367)
* [kotlin/en] Add "if" usage as a function

* [kotlin/en] Change comment on "if" expression

Rephrase the comment to use the term "expression" in place of "function"
2016-09-12 16:33:16 +02:00

11 KiB

language contributors filename
kotlin
S Webber
https://github.com/s-webber
LearnKotlin.kt

Kotlin is a statically typed programming language for the JVM, Android and the browser. It is 100% interoperable with Java. Read more here.

// Single-line comments start with //
/*
Multi-line comments look like this.
*/

// The "package" keyword works in the same way as in Java.
package com.learnxinyminutes.kotlin

/*
The entry point to a Kotlin program is a function named "main".
The function is passed an array containing any command line arguments.
*/
fun main(args: Array<String>) {
    /*
    Declaring values is done using either "var" or "val".
    "val" declarations cannot be reassigned, whereas "vars" can.
    */
    val fooVal = 10 // we cannot later reassign fooVal to something else
    var fooVar = 10
    fooVar = 20 // fooVar can be reassigned

    /*
    In most cases, Kotlin can determine what the type of a variable is,
    so we don't have to explicitly specify it every time.
    We can explicitly declare the type of a variable like so:
    */
    val foo : Int = 7

    /*
    Strings can be represented in a similar way as in Java.
    Escaping is done with a backslash.
    */
    val fooString = "My String Is Here!";
    val barString = "Printing on a new line?\nNo Problem!";
    val bazString = "Do you want to add a tab?\tNo Problem!";
    println(fooString);
    println(barString);
    println(bazString);

    /*
    A raw string is delimited by a triple quote (""").
    Raw strings can contain newlines and any other characters.
    */
    val fooRawString = """
fun helloWorld(val name : String) {
   println("Hello, world!")
}
"""
    println(fooRawString)

    /*
    Strings can contain template expressions.
    A template expression starts with a dollar sign ($).
    */
    val fooTemplateString = "$fooString has ${fooString.length} characters"
    println(fooTemplateString)

    /*
    For a variable to hold null it must be explicitly specified as nullable.
    A variable can be specified as nullable by appending a ? to its type.
    We can access a nullable variable by using the ?. operator.
    We can use the ?: operator to specify an alternative value to use
    if a variable is null.
    */
    var fooNullable: String? = "abc"
    println(fooNullable?.length) // => 3
    println(fooNullable?.length ?: -1) // => 3
    fooNullable = null
    println(fooNullable?.length) // => null
    println(fooNullable?.length ?: -1) // => -1

    /*
    Functions can be declared using the "fun" keyword.
    Function arguments are specified in brackets after the function name.
    Function arguments can optionally have a default value.
    The function return type, if required, is specified after the arguments.
    */
    fun hello(name: String = "world") : String {
        return "Hello, $name!"
    }
    println(hello("foo")) // => Hello, foo!
    println(hello(name = "bar")) // => Hello, bar!
    println(hello()) // => Hello, world!

    /*
    A function parameter may be marked with the "vararg" keyword
    to allow a variable number of arguments to be passed to the function.
    */
    fun varargExample(vararg names: Int) {
        println("Argument has ${names.size} elements")
    }
    varargExample() // => Argument has 0 elements
    varargExample(1) // => Argument has 1 elements
    varargExample(1, 2, 3) // => Argument has 3 elements

    /*
    When a function consists of a single expression then the curly brackets can
    be omitted. The body is specified after a = symbol.
    */
    fun odd(x: Int): Boolean = x % 2 == 1
    println(odd(6)) // => false
    println(odd(7)) // => true

    // If the return type can be inferred then we don't need to specify it.
    fun even(x: Int) = x % 2 == 0
    println(even(6)) // => true
    println(even(7)) // => false

    // Functions can take functions as arguments and return functions.
    fun not(f: (Int) -> Boolean) : (Int) -> Boolean {
        return {n -> !f.invoke(n)}
    }
    // Named functions can be specified as arguments using the :: operator.
    val notOdd = not(::odd)
    val notEven = not(::even)
    // Anonymous functions can be specified as arguments.
    val notZero = not {n -> n == 0}
    /*
    If an anonymous function has only one parameter
    then its declaration can be omitted (along with the ->).
    The name of the single parameter will be "it".
    */
    val notPositive = not {it > 0}
    for (i in 0..4) {
        println("${notOdd(i)} ${notEven(i)} ${notZero(i)} ${notPositive(i)}")
    }

    // The "class" keyword is used to declare classes.
    class ExampleClass(val x: Int) {
        fun memberFunction(y: Int) : Int {
            return x + y
        }

        infix fun infixMemberFunction(y: Int) : Int {
            return x * y
        }
    }
    /*
    To create a new instance we call the constructor.
    Note that Kotlin does not have a "new" keyword.
    */
    val fooExampleClass = ExampleClass(7)
    // Member functions can be called using dot notation.
    println(fooExampleClass.memberFunction(4)) // => 11
    /*
    If a function has been marked with the "infix" keyword then it can be
    called using infix notation.
    */
    println(fooExampleClass infixMemberFunction 4) // => 28

    /*
    Data classes are a concise way to create classes that just hold data.
    The "hashCode"/"equals" and "toString" methods are automatically generated.
    */
    data class DataClassExample (val x: Int, val y: Int, val z: Int)
    val fooData = DataClassExample(1, 2, 4)
    println(fooData) // => DataClassExample(x=1, y=2, z=4)

    // Data classes have a "copy" function.
    val fooCopy = fooData.copy(y = 100)
    println(fooCopy) // => DataClassExample(x=1, y=100, z=4)

    // Objects can be destructured into multiple variables.
    val (a, b, c) = fooCopy
    println("$a $b $c") // => 1 100 4

    // The "with" function is similar to the JavaScript "with" statement.
    data class MutableDataClassExample (var x: Int, var y: Int, var z: Int)
    val fooMutableDate = MutableDataClassExample(7, 4, 9)
    with (fooMutableDate) {
        x -= 2
        y += 2
        z--
    }
    println(fooMutableDate) // => MutableDataClassExample(x=5, y=6, z=8)

    /*
    We can create a list using the "listOf" function.
    The list will be immutable - elements cannot be added or removed.
    */
    val fooList = listOf("a", "b", "c")
    println(fooList.size) // => 3
    println(fooList.first()) // => a
    println(fooList.last()) // => c
    // Elements of a list can be accessed by their index.
    println(fooList[1]) // => b

    // A mutable list can be created using the "mutableListOf" function.
    val fooMutableList = mutableListOf("a", "b", "c")
    fooMutableList.add("d")
    println(fooMutableList.last()) // => d
    println(fooMutableList.size) // => 4

    // We can create a set using the "setOf" function.
    val fooSet = setOf("a", "b", "c")
    println(fooSet.contains("a")) // => true
    println(fooSet.contains("z")) // => false

    // We can create a map using the "mapOf" function.
    val fooMap = mapOf("a" to 8, "b" to 7, "c" to 9)
    // Map values can be accessed by their key.
    println(fooMap["a"]) // => 8

    /*
    Sequences represent lazily-evaluated collections.
    We can create a sequence using the "generateSequence" function.
    */
    val fooSequence = generateSequence(1, {it + 1})
    val x = fooSequence.take(10).toList()
    println(x) // => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

    // An example of using a sequence to generate Fibonacci numbers:
    fun fibonacciSequence() : Sequence<Long> {
        var a = 0L
        var b = 1L

        fun next() : Long {
            val result = a + b
            a = b
            b = result
            return a
        }

        return generateSequence(::next)
    }
    val y = fibonacciSequence().take(10).toList()
    println(y) // => [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

    // Kotlin provides higher-order functions for working with collections.
    val z = (1..9).map {it * 3}
                  .filter {it < 20}
                  .groupBy {it % 2 == 0}
                  .mapKeys {if (it.key) "even" else "odd"}
    println(z) // => {odd=[3, 9, 15], even=[6, 12, 18]}

    // A "for" loop can be used with anything that provides an iterator.
    for (c in "hello") {
        println(c)
    }

    // "while" loops work in the same way as other languages.
    var ctr = 0
    while (ctr < 5) {
        println(ctr)
        ctr++
    }
    do {
        println(ctr)
        ctr++
    } while (ctr < 10)

    /*
    "if" can be used as an expression that returns a value.
    For this reason the ternary ?: operator is not needed in Kotlin.
    */
    val num = 5
    val message = if (num % 2 == 0) "even" else "odd"
    println("$num is $message") // => 5 is odd

    // "when" can be used as an alternative to "if-else if" chains.
    val i = 10
    when {
        i < 7 -> println("first block")
        fooString.startsWith("hello") -> println("second block")
        else -> println("else block")
    }

    // "when" can be used with an argument.
    when (i) {
        0, 21 -> println("0 or 21")
        in 1..20 -> println("in the range 1 to 20")
        else -> println("none of the above")
    }

    // "when" can be used as a function that returns a value.
    var result = when (i) {
        0, 21 -> "0 or 21"
        in 1..20 -> "in the range 1 to 20"
        else -> "none of the above"
    }
    println(result)

    /*
    We can check if an object is a particular type by using the "is" operator.
    If an object passes a type check then it can be used as that type without
    explicitly casting it.
    */
    fun smartCastExample(x: Any) : Boolean {
        if (x is Boolean) {
            // x is automatically cast to Boolean
            return x
        } else if (x is Int) {
            // x is automatically cast to Int
            return x > 0
        } else if (x is String) {
            // x is automatically cast to String
            return x.isNotEmpty()
        } else {
            return false
        }
    }
    println(smartCastExample("Hello, world!")) // => true
    println(smartCastExample("")) // => false
    println(smartCastExample(5)) // => true
    println(smartCastExample(0)) // => false
    println(smartCastExample(true)) // => true

    /*
    Extensions are a way to add new functionality to a class.
    This is similar to C# extension methods.
    */
    fun String.remove(c: Char): String {
        return this.filter {it != c}
    }
    println("Hello, world!".remove('l')) // => Heo, word!

    println(EnumExample.A) // => A
    println(ObjectExample.hello()) // => hello
}

// Enum classes are similar to Java enum types.
enum class EnumExample {
    A, B, C
}

/*
The "object" keyword can be used to create singleton objects.
We cannot assign it to a variable, but we can refer to it by its name.
This is similar to Scala singleton objects.
*/
object ObjectExample {
    fun hello() : String {
        return "hello"
    }
}

Further Reading