learnxinyminutes-docs/zh-cn/r-cn.html.markdown
2013-09-18 21:51:48 +08:00

15 KiB
Raw Blame History

评论以 # 开始

R 语言原生不支持 多行注释

但是你可以像这样来多行注释

在窗口里按回车键可以执行一条命令

###################################################################

不用懂编程就可以开始动手了

###################################################################

data() # 浏览内建的数据集 data(rivers) # 北美主要河流的长度(数据集) ls() # 在工作空间中查看「河流」是否出现 head(rivers) # 撇一眼数据集

735 320 325 392 524 450

length(rivers) # 我们测量了多少条河流?

141

summary(rivers)

Min. 1st Qu. Median Mean 3rd Qu. Max.

135.0 310.0 425.0 591.2 680.0 3710.0

stem(rivers) # 茎叶图(一种类似于直方图的展现形式)

The decimal point is 2 digit(s) to the right of the |

0 | 4

2 | 011223334555566667778888899900001111223333344455555666688888999

4 | 111222333445566779001233344567

6 | 000112233578012234468

8 | 045790018

10 | 04507

12 | 1471

14 | 56

16 | 7

18 | 9

20 |

22 | 25

24 | 3

26 |

28 |

30 |

32 |

34 |

36 | 1

stem(log(rivers)) # 查看数据集的方式既不是标准形式也不是取log后的结果! 看起来,是钟形曲线形式的基本数据集

The decimal point is 1 digit(s) to the left of the |

48 | 1

50 |

52 | 15578

54 | 44571222466689

56 | 023334677000124455789

58 | 00122366666999933445777

60 | 122445567800133459

62 | 112666799035

64 | 00011334581257889

66 | 003683579

68 | 0019156

70 | 079357

72 | 89

74 | 84

76 | 56

78 | 4

80 |

82 | 2

hist(rivers, col="#333333", border="white", breaks=25) # 试试用这些参数画画 (译者注:给 river 做统计频数直方图,包含了这些参数:数据源,颜色,边框,空格) hist(log(rivers), col="#333333", border="white", breaks=25) #你还可以做更多式样的绘图

还有其他一些简单的数据集可以被用来加载。R 语言包括了大量这种 data()

data(discoveries) plot(discoveries, col="#333333", lwd=3, xlab="Year", main="Number of important discoveries per year")

译者注参数为数据源颜色线条宽度X 轴名称,标题)

plot(discoveries, col="#333333", lwd=3, type = "h", xlab="Year", main="Number of important discoveries per year")

除了按照默认的年份排序,我们还可以排序来发现特征

sort(discoveries)

[1] 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2

[26] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3

[51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4

[76] 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 8 9 10 12

stem(discoveries, scale=2) # 译者注:茎叶图(数据,放大系数)

The decimal point is at the |

0 | 000000000

1 | 000000000000

2 | 00000000000000000000000000

3 | 00000000000000000000

4 | 000000000000

5 | 0000000

6 | 000000

7 | 0000

8 | 0

9 | 0

10 | 0

11 |

12 | 0

max(discoveries)

12

summary(discoveries)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0 2.0 3.0 3.1 4.0 12.0

#基本的统计学操作也不需要任何编程知识

#随机生成数据 round(runif(7, min=.5, max=6.5))

译者注runif 产生随机数round 四舍五入

1 4 6 1 4 6 4

你输出的结果会和我们给出的不同,除非我们设置了相同的随机种子 random.seed(31337)

#从标准高斯函数中随机生成 9 次 rnorm(9)

[1] 0.07528471 1.03499859 1.34809556 -0.82356087 0.61638975 -1.88757271

[7] -0.59975593 0.57629164 1.08455362

#########################

基础编程

#########################

数值

#“数值”指的是双精度的浮点数 5 # 5 class(5) # "numeric" 5e4 # 50000 # 用科学技术法方便的处理极大值、极小值或者可变的量级 6.02e23 # 阿伏伽德罗常数# 1.6e-35 # 布朗克长度

长整数并用 L 结尾

5L # 5 #输出5L class(5L) # "integer"

可以自己试一试?用 class() 函数获取更多信息

事实上,你可以找一些文件查阅 xyz 以及xyz的差别

xyz 用来查看源码实现,?xyz 用来看帮助

算法

10 + 66 # 76 53.2 - 4 # 49.2 2 * 2.0 # 4 3L / 4 # 0.75 3 %% 2 # 1

特殊数值类型

class(NaN) # "numeric" class(Inf) # "numeric" class(-Inf) # "numeric" # 在以下场景中会用到 integrate( dnorm(x), 3, Inf ) -- 消除 Z 轴数据

但要注意NaN 并不是唯一的特殊数值类型……

class(NA) # 看上面 class(NULL) # NULL

简单列表

c(6, 8, 7, 5, 3, 0, 9) # 6 8 7 5 3 0 9 c('alef', 'bet', 'gimmel', 'dalet', 'he') c('Z', 'o', 'r', 'o') == "Zoro" # FALSE FALSE FALSE FALSE

一些优雅的内置功能

5:15 # 5 6 7 8 9 10 11 12 13 14 15

seq(from=0, to=31337, by=1337)

[1] 0 1337 2674 4011 5348 6685 8022 9359 10696 12033 13370 14707

[13] 16044 17381 18718 20055 21392 22729 24066 25403 26740 28077 29414 30751

letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"

[20] "t" "u" "v" "w" "x" "y" "z"

month.abb # "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

Access the n'th element of a list with list.name[n] or sometimes list.namen

使用 list.name[n] 来访问第 n 个列表元素,有时候需要使用 list.namen

letters[18] # "r" LETTERS[13] # "M" month.name[9] # "September" c(6, 8, 7, 5, 3, 0, 9)[3] # 7

字符串

字符串和字符在 R 语言中没有区别

"Horatio" # "Horatio" class("Horatio") # "character" substr("Fortuna multis dat nimis, nulli satis.", 9, 15) # "multis " gsub('u', 'ø', "Fortuna multis dat nimis, nulli satis.") # "Fortøna møltis dat nimis, nølli satis."

逻辑值

布尔值

class(TRUE) # "logical" class(FALSE) # "logical"

和我们预想的一样

TRUE == TRUE # TRUE TRUE == FALSE # FALSE FALSE != FALSE # FALSE FALSE != TRUE # TRUE

缺失数据NA也是逻辑值

class(NA) # "logical" #定义NA为逻辑型

因子

因子是为数据分类排序设计的(像是排序小朋友们的年级或性别)

levels(factor(c("female", "male", "male", "female", "NA", "female"))) # "female" "male" "NA"

factor(c("female", "female", "male", "NA", "female"))

female female male NA female

Levels: female male NA

data(infert) # 自然以及引产导致的不育症 levels(infert$education) # "0-5yrs" "6-11yrs" "12+ yrs"

变量

有许多种方式用来赋值

x = 5 # 这样可以 y <- "1" # 更推荐这样 TRUE -> z # 这样可行,但是很怪

#我们还可以使用强制转型 as.numeric(y) # 1 as.character(x) # "5"

循环

for 循环语句

for (i in 1:4) { print(i) }

while 循环

a <- 10 while (a > 4) { cat(a, "...", sep = "") a <- a - 1 }

记住,在 R 语言中 for / while 循环都很慢

建议使用 apply()(我们一会介绍)来错做一串数据(比如一列或者一行数据)

IF/ELSE

再来看这些优雅的标准

if (4 > 3) { print("Huzzah! It worked!") } else { print("Noooo! This is blatantly illogical!") }

=>

[1] "Huzzah! It worked!"

函数

定义如下

jiggle <- function(x) { x + rnorm(x, sd=.1) #add in a bit of (controlled) noise return(x) }

和其他 R 语言函数一样调用

jiggle(5) # 5±ε. 使用 set.seed(2716057) 后, jiggle(5)==5.005043

#########################

数据容器vectors, matrices, data frames, and arrays

#########################

单维度

你可以将目前我们学习到的任何类型矢量化,只要它们拥有相同的类型

vec <- c(8, 9, 10, 11) vec # 8 9 10 11

矢量的类型是这一组数据元素的类型

class(vec) # "numeric"

If you vectorize items of different classes, weird coercions happen

#如果你强制的将不同类型数值矢量化,会出现特殊值 c(TRUE, 4) # 1 4 c("dog", TRUE, 4) # "dog" "TRUE" "4"

#我们这样来取内部数据R 的下标索引顺序 1 开始) vec[1] # 8

我们可以根据条件查找特定数据

which(vec %% 2 == 0) # 1 3

抓取矢量中第一个和最后一个字符

head(vec, 1) # 8 tail(vec, 1) # 11 #如果下标溢出或不存会得到 NA vec[6] # NA

你可以使用 length() 获取矢量的长度

length(vec) # 4

你可以直接操作矢量或者矢量的子集

vec * 4 # 16 20 24 28 vec[2:3] * 5 # 25 30

这里有许多内置的函数,来表现向量

mean(vec) # 9.5 var(vec) # 1.666667 sd(vec) # 1.290994 max(vec) # 11 min(vec) # 8 sum(vec) # 38

二维(相同元素类型)

#你可以为同样类型的变量建立矩阵 mat <- matrix(nrow = 3, ncol = 2, c(1,2,3,4,5,6)) mat

=>

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

和 vector 不一样的是,一个矩阵的类型真的是 「matrix」而不是内部元素的类型

class(mat) # => "matrix"

访问第一行的字符

mat[1,] # 1 4

操作第一行数据

3 * mat[,1] # 3 6 9

访问一个特定数据

mat[3,2] # 6

转置整个矩阵(译者注:变成 2 行 3 列)

t(mat)

=>

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

使用 cbind() 函数把两个矩阵按列合并,形成新的矩阵

mat2 <- cbind(1:4, c("dog", "cat", "bird", "dog")) mat2

=>

[,1] [,2]

[1,] "1" "dog"

[2,] "2" "cat"

[3,] "3" "bird"

[4,] "4" "dog"

class(mat2) # matrix

Again, note what happened!

注意

因为矩阵内部元素必须包含同样的类型

所以现在每一个元素都转化成字符串

c(class(mat2[,1]), class(mat2[,2]))

按行合并两个向量,建立新的矩阵

mat3 <- rbind(c(1,2,4,5), c(6,7,0,4)) mat3

=>

[,1] [,2] [,3] [,4]

[1,] 1 2 4 5

[2,] 6 7 0 4

哈哈,数据类型都一样的,没有发生强制转换,生活真美好

二维(不同的元素类型)

利用 data frame 可以将不同类型数据放在一起

dat <- data.frame(c(5,2,1,4), c("dog", "cat", "bird", "dog")) names(dat) <- c("number", "species") # 给数据列命名 class(dat) # "data.frame" dat

=>

number species

1 5 dog

2 2 cat

3 1 bird

4 4 dog

class(dat$number) # "numeric" class(dat[,2]) # "factor"

The data.frame() function converts character vectors to factor vectors

data.frame() 会将字符向量转换为 factor 向量

有很多精妙的方法来获取 data frame 的子数据集

dat$number # 5 2 1 4 dat[,1] # 5 2 1 4 dat[,"number"] # 5 2 1 4

多维(相同元素类型)

利用数组创造一个 n 维的表格

You can make a two-dimensional table (sort of like a matrix)

#你可以建立一个2维表格类型和矩阵相似 array(c(c(1,2,4,5),c(8,9,3,6)), dim=c(2,4)) #数组(c(c(1,2,4,5),c(8,9,3,6)),有前两个向量组成2行4列

=>

[,1] [,2] [,3] [,4]

[1,] 1 4 8 3

[2,] 2 5 9 6

You can use array to make three-dimensional matrices too

#你也可以利用数组建立一个三维的矩阵 array(c(c(c(2,300,4),c(8,9,0)),c(c(5,60,0),c(66,7,847))), dim=c(3,2,2))

=>

, , 1

[,1] [,2]

[1,] 2 8

[2,] 300 9

[3,] 4 0

, , 2

[,1] [,2]

[1,] 5 66

[2,] 60 7

[3,] 0 847

LISTS (MULTI-DIMENSIONAL, POSSIBLY RAGGED, OF DIFFERENT TYPES)

#列表(多维的,不同类型的)

Finally, R has lists (of vectors)

#R语言有列表的形式 list1 <- list(time = 1:40) list1$price = c(rnorm(40,.5*list1$time,4)) # random list1

You can get items in the list like so

#你可以获得像上面列表的形式 list1$time

You can subset list items like vectors

#你也可以获取他们的子集,一种类似于矢量的形式 list1$price[4]

#########################

The apply() family of functions

#apply()函数家族的应用 #########################

Remember mat?

#输出mat矩阵 mat

=>

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

Use apply(X, MARGIN, FUN) to apply function FUN to a matrix X

#使用(X, MARGIN, FUN)将一个function功能函数根据其特征应用到矩阵x中

over rows (MAR = 1) or columns (MAR = 2)

#规定行列其边界分别为1,2

That is, R does FUN to each row (or column) of X, much faster than a

#即就是R定义一个function使每一行/列的x快于一个for或者while循环

for or while loop would do

apply(mat, MAR = 2, myFunc)

=>

[,1] [,2]

[1,] 3 15

[2,] 7 19

[3,] 11 23

Other functions: ?lapply, ?sapply

其他的功能函数,

Don't feel too intimidated; everyone agrees they are rather confusing

#不要被这些吓到,许多人在此都会容易混淆

The plyr package aims to replace (and improve upon!) the *apply() family.

#plyr程序包的作用是用来改进family函数家族

install.packages("plyr") require(plyr) ?plyr

#########################

Loading data

#########################

"pets.csv" is a file on the internet

#"pets.csv" 是网上的一个文本 pets <- read.csv("http://learnxinyminutes.com/docs/pets.csv") #首先读取这个文本 pets head(pets, 2) # first two rows #显示前两行 tail(pets, 1) # last row #显示最后一行

To save a data frame or matrix as a .csv file

#以.csv格式来保存数据集或者矩阵 write.csv(pets, "pets2.csv") # to make a new .csv file #输出新的文本pets2.csv

set working directory with setwd(), look it up with getwd()

#改变工作路径setwd()查找工作路径getwd()

Try ?read.csv and ?write.csv for more information

#试着做一做以上学到的,或者运行更多的信息

#########################

Plots

#画图 #########################

Scatterplots!

#散点图 plot(list1$time, list1$price, main = "fake data") #作图横轴list1$time纵轴list1$price主题fake data

Regressions!

#退回 linearModel <- lm(price ~ time, data = list1)

线性模型数据集为list1以价格对时间做相关分析模型

linearModel # outputs result of regression #输出拟合结果,并退出

Plot regression line on existing plot

#将拟合结果展示在图上,颜色设为红色 abline(linearModel, col = "red")

Get a variety of nice diagnostics

#也可以获取各种各样漂亮的分析图 plot(linearModel)

Histograms!

#直方图 hist(rpois(n = 10000, lambda = 5), col = "thistle") #统计频数直方图()

Barplots!

#柱状图 barplot(c(1,4,5,1,2), names.arg = c("red","blue","purple","green","yellow")) #作图柱的高度负值c(1,4,5,1,2各个柱子的名称"red","blue","purple","green","yellow"

Try the ggplot2 package for more and better graphics

#可以尝试着使用ggplot2程序包来美化图片 install.packages("ggplot2") require(ggplot2) ?ggplot2