mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-01-04 05:07:34 +03:00
608 lines
19 KiB
Markdown
608 lines
19 KiB
Markdown
---
|
||
language: swift
|
||
filename: learnswift-cn.swift
|
||
contributors:
|
||
- ["Grant Timmerman", "http://github.com/grant"]
|
||
translators:
|
||
- ["Xavier Yao", "http://github.com/xavieryao"]
|
||
- ["Joey Huang", "http://github.com/kamidox"]
|
||
- ["CY Lim", "http://github.com/cylim"]
|
||
lang: zh-cn
|
||
---
|
||
|
||
Swift 是 Apple 开发的用于 iOS 和 OS X 开发的编程语言。Swift 于2014年 Apple WWDC (全球开发者大会)中被引入,用以与 Objective-C 共存,同时对错误代码更具弹性。Swift 由 Xcode 6 beta 中包含的 LLVM 编译器编译。
|
||
|
||
Swift 的官方语言教程 [Swift Programming Language](https://itunes.apple.com/us/book/swift-programming-language/id881256329) 可以从 iBooks 免费下载.
|
||
|
||
亦可参阅:Apple's [getting started guide](https://developer.apple.com/library/prerelease/ios/referencelibrary/GettingStarted/DevelopiOSAppsSwift/) ——一个完整的Swift 教程
|
||
|
||
```swift
|
||
// 导入外部模块
|
||
import UIKit
|
||
|
||
//
|
||
// MARK: 基础
|
||
//
|
||
|
||
// XCODE 支持给注释代码作标记,这些标记会列在 XCODE 的跳转栏里,支持的标记为
|
||
// MARK: 普通标记
|
||
// TODO: TODO 标记
|
||
// FIXME: FIXME 标记
|
||
|
||
// Swift2.0 println() 及 print() 已经整合成 print()。
|
||
print("Hello, world") // 这是原本的 println(),会自动进入下一行
|
||
print("Hello, world", terminator: "") // 如果不要自动进入下一行,需设定结束符为空串
|
||
|
||
// 变量 (var) 的值设置后可以随意改变
|
||
// 常量 (let) 的值设置后不能改变
|
||
var myVariable = 42
|
||
let øπΩ = "value" // 可以支持 unicode 变量名
|
||
let π = 3.1415926
|
||
let myConstant = 3.1415926
|
||
let explicitDouble: Double = 70 // 明确指定变量类型为 Double ,否则编译器将自动推断变量类型
|
||
let weak = "keyword"; let override = "another keyword" // 语句之间可以用分号隔开,语句未尾不需要分号
|
||
let intValue = 0007 // 7
|
||
let largeIntValue = 77_000 // 77000
|
||
let label = "some text " + String(myVariable) // 类型转换
|
||
let piText = "Pi = \(π), Pi 2 = \(π * 2)" // 格式化字符串
|
||
|
||
// 条件编译
|
||
// 使用 -D 定义编译开关
|
||
#if false
|
||
print("Not printed")
|
||
let buildValue = 3
|
||
#else
|
||
let buildValue = 7
|
||
#endif
|
||
print("Build value: \(buildValue)") // Build value: 7
|
||
|
||
/*
|
||
Optionals 是 Swift 的新特性,它允许你存储两种状态的值给 Optional 变量:有效值或 None 。
|
||
可在值名称后加个问号 (?) 来表示这个值是 Optional。
|
||
|
||
Swift 要求所有的 Optinal 属性都必须有明确的值,如果为空,则必须明确设定为 nil
|
||
|
||
Optional<T> 是个枚举类型
|
||
*/
|
||
var someOptionalString: String? = "optional" // 可以是 nil
|
||
// 下面的语句和上面完全等价,上面的写法更推荐,因为它更简洁,问号 (?) 是 Swift 提供的语法糖
|
||
var someOptionalString2: Optional<String> = "optional"
|
||
|
||
if someOptionalString != nil {
|
||
// 变量不为空
|
||
if someOptionalString!.hasPrefix("opt") {
|
||
print("has the prefix")
|
||
}
|
||
|
||
let empty = someOptionalString?.isEmpty
|
||
}
|
||
someOptionalString = nil
|
||
|
||
/*
|
||
使用 (!) 可以解决无法访问optional值的运行错误。若要使用 (!)来强制解析,一定要确保 Optional 里不是 nil参数。
|
||
*/
|
||
|
||
// 显式解包 optional 变量
|
||
var unwrappedString: String! = "Value is expected."
|
||
// 下面语句和上面完全等价,感叹号 (!) 是个后缀运算符,这也是个语法糖
|
||
var unwrappedString2: ImplicitlyUnwrappedOptional<String> = "Value is expected."
|
||
|
||
if let someOptionalStringConstant = someOptionalString {
|
||
// 由于变量 someOptinalString 有值,不为空,所以 if 条件为真
|
||
if !someOptionalStringConstant.hasPrefix("ok") {
|
||
// does not have the prefix
|
||
}
|
||
}
|
||
|
||
// Swift 支持可保存任何数据类型的变量
|
||
// AnyObject == id
|
||
// 和 Objective-C `id` 不一样, AnyObject 可以保存任何类型的值 (Class, Int, struct, 等)
|
||
var anyObjectVar: AnyObject = 7
|
||
anyObjectVar = "Changed value to a string, not good practice, but possible."
|
||
|
||
/*
|
||
这里是注释
|
||
|
||
/*
|
||
支持嵌套的注释
|
||
*/
|
||
*/
|
||
|
||
|
||
//
|
||
// MARK: 数组与字典(关联数组)
|
||
//
|
||
|
||
/*
|
||
Array 和 Dictionary 是结构体,不是类,他们作为函数参数时,是用值传递而不是指针传递。
|
||
可以用 `var` 和 `let` 来定义变量和常量。
|
||
*/
|
||
|
||
// Array
|
||
var shoppingList = ["catfish", "water", "lemons"]
|
||
shoppingList[1] = "bottle of water"
|
||
let emptyArray = [String]() // 使用 let 定义常量,此时 emptyArray 数组不能添加或删除内容
|
||
let emptyArray2 = Array<String>() // 与上一语句等价,上一语句更常用
|
||
var emptyMutableArray = [String]() // 使用 var 定义变量,可以向 emptyMutableArray 添加数组元素
|
||
var explicitEmptyMutableStringArray: [String] = [] // 与上一语句等价
|
||
|
||
// 字典
|
||
var occupations = [
|
||
"Malcolm": "Captain",
|
||
"kaylee": "Mechanic"
|
||
]
|
||
occupations["Jayne"] = "Public Relations" // 修改字典,如果 key 不存在,自动添加一个字典元素
|
||
let emptyDictionary = [String: Float]() // 使用 let 定义字典常量,字典常量不能修改里面的值
|
||
let emptyDictionary2 = Dictionary<String, Float>() // 与上一语句类型等价,上一语句更常用
|
||
var emptyMutableDictionary = [String: Float]() // 使用 var 定义字典变量
|
||
var explicitEmptyMutableDictionary: [String: Float] = [:] // 与上一语句类型等价
|
||
|
||
|
||
//
|
||
// MARK: 控制流
|
||
//
|
||
|
||
// 数组的 for 循环
|
||
let myArray = [1, 1, 2, 3, 5]
|
||
for value in myArray {
|
||
if value == 1 {
|
||
print("One!")
|
||
} else {
|
||
print("Not one!")
|
||
}
|
||
}
|
||
|
||
// 字典的 for 循环
|
||
var dict = ["one": 1, "two": 2]
|
||
for (key, value) in dict {
|
||
print("\(key): \(value)")
|
||
}
|
||
|
||
// 区间的 loop 循环:其中 `...` 表示闭环区间,即[-1, 3];`..<` 表示半开闭区间,即[-1,3)
|
||
for i in -1...shoppingList.count {
|
||
print(i)
|
||
}
|
||
shoppingList[1...2] = ["steak", "peacons"]
|
||
// 可以使用 `..<` 来去掉最后一个元素
|
||
|
||
// while 循环
|
||
var i = 1
|
||
while i < 1000 {
|
||
i *= 2
|
||
}
|
||
|
||
// repeat-while 循环
|
||
repeat {
|
||
print("hello")
|
||
} while 1 == 2
|
||
|
||
// Switch 语句
|
||
// Swift 里的 Switch 语句功能异常强大,结合枚举类型,可以实现非常简洁的代码,可以把 switch 语句想象成 `if` 的语法糖
|
||
// 它支持字符串,类实例或原生数据类型 (Int, Double, etc)
|
||
let vegetable = "red pepper"
|
||
switch vegetable {
|
||
case "celery":
|
||
let vegetableComment = "Add some raisins and make ants on a log."
|
||
case "cucumber", "watercress":
|
||
let vegetableComment = "That would make a good tea sandwich."
|
||
case let localScopeValue where localScopeValue.hasSuffix("pepper"):
|
||
let vegetableComment = "Is it a spicy \(localScopeValue)?"
|
||
default: // 在 Swift 里,switch 语句的 case 必须处理所有可能的情况,如果 case 无法全部处理,则必须包含 default语句
|
||
let vegetableComment = "Everything tastes good in soup."
|
||
}
|
||
|
||
|
||
//
|
||
// MARK: 函数
|
||
//
|
||
|
||
// 函数是一个 first-class 类型,他们可以嵌套,可以作为函数参数传递
|
||
|
||
// 函数文档可使用 reStructedText 格式直接写在函数的头部
|
||
/**
|
||
A greet operation
|
||
|
||
- A bullet in docs
|
||
- Another bullet in the docs
|
||
|
||
:param: name A name
|
||
:param: day A day
|
||
:returns: A string containing the name and day value.
|
||
*/
|
||
func greet(name: String, day: String) -> String {
|
||
return "Hello \(name), today is \(day)."
|
||
}
|
||
greet("Bob", day: "Tuesday")
|
||
|
||
// 第一个参数`_`表示不使用外部参数名,忽略`_`表示外部参数名和内部参数名使用同一个名称。
|
||
// 第二个参数表示外部参数名使用 `externalParamName` ,内部参数名使用 `localParamName`
|
||
func greet2(_ requiredName: String, externalParamName localParamName: String) -> String {
|
||
return "Hello \(requiredName), the day is \(localParamName)"
|
||
}
|
||
greet2(requiredName:"John", externalParamName: "Sunday") // 调用时,使用命名参数来指定参数的值
|
||
|
||
// 函数可以通过元组 (tuple) 返回多个值
|
||
func getGasPrices() -> (Double, Double, Double) {
|
||
return (3.59, 3.69, 3.79)
|
||
}
|
||
let pricesTuple = getGasPrices()
|
||
let price = pricesTuple.2 // 3.79
|
||
// 通过下划线 (_) 来忽略不关心的值
|
||
let (_, price1, _) = pricesTuple // price1 == 3.69
|
||
print(price1 == pricesTuple.1) // true
|
||
print("Gas price: \(price)")
|
||
|
||
// 可变参数
|
||
func setup(numbers: Int...) {
|
||
// 可变参数是个数组
|
||
let _ = numbers[0]
|
||
let _ = numbers.count
|
||
}
|
||
|
||
// 函数变量以及函数作为返回值返回
|
||
func makeIncrementer() -> (Int -> Int) {
|
||
func addOne(number: Int) -> Int {
|
||
return 1 + number
|
||
}
|
||
return addOne
|
||
}
|
||
var increment = makeIncrementer()
|
||
increment(7)
|
||
|
||
// 强制进行指针传递 (引用传递),使用 `inout` 关键字修饰函数参数
|
||
func swapTwoInts(a: inout Int, b: inout Int) {
|
||
let tempA = a
|
||
a = b
|
||
b = tempA
|
||
}
|
||
var someIntA = 7
|
||
var someIntB = 3
|
||
swapTwoInts(&someIntA, b: &someIntB)
|
||
print(someIntB) // 7
|
||
|
||
|
||
//
|
||
// MARK: 闭包
|
||
//
|
||
var numbers = [1, 2, 6]
|
||
|
||
// 函数是闭包的一个特例 ({})
|
||
|
||
// 闭包实例
|
||
// `->` 分隔了闭包的参数和返回值
|
||
// `in` 分隔了闭包头 (包括参数及返回值) 和闭包体
|
||
// 下面例子中,`map` 的参数是一个函数类型,它的功能是把数组里的元素作为参数,逐个调用 `map` 参数传递进来的函数。
|
||
numbers.map({
|
||
(number: Int) -> Int in
|
||
let result = 3 * number
|
||
return result
|
||
})
|
||
|
||
// 当闭包的参数类型和返回值都是己知的情况下,且只有一个语句作为其返回值时,我们可以简化闭包的写法
|
||
numbers = numbers.map({ number in 3 * number })
|
||
// 我们也可以使用 $0, $1 来指代第 1 个,第 2 个参数,上面的语句最终可简写为如下形式
|
||
// numbers = numbers.map({ $0 * 3 })
|
||
|
||
print(numbers) // [3, 6, 18]
|
||
|
||
// 简洁的闭包
|
||
numbers = numbers.sort { $0 > $1 }
|
||
|
||
print(numbers) // [18, 6, 3]
|
||
|
||
|
||
//
|
||
// MARK: 结构体
|
||
//
|
||
|
||
// 结构体和类非常类似,可以有属性和方法
|
||
|
||
struct NamesTable {
|
||
let names: [String]
|
||
|
||
// 自定义下标运算符
|
||
subscript(index: Int) -> String {
|
||
return names[index]
|
||
}
|
||
}
|
||
|
||
// 结构体有一个自动生成的隐含的命名构造函数
|
||
let namesTable = NamesTable(names: ["Me", "Them"])
|
||
let name = namesTable[1]
|
||
print("Name is \(name)") // Name is Them
|
||
|
||
//
|
||
// MARK: 类
|
||
//
|
||
|
||
// 类和结构体的有三个访问控制级别,他们分别是 internal (默认), public, private
|
||
// internal: 模块内部可以访问
|
||
// public: 其他模块可以访问
|
||
// private: 只有定义这个类或结构体的源文件才能访问
|
||
|
||
public class Shape {
|
||
public func getArea() -> Int {
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
// 类的所有方法和属性都是 public 的
|
||
// 如果你只是需要把数据保存在一个结构化的实例里面,应该用结构体
|
||
|
||
internal class Rect: Shape {
|
||
// 值属性 (Stored properties)
|
||
var sideLength: Int = 1
|
||
|
||
// 计算属性 (Computed properties)
|
||
private var perimeter: Int {
|
||
get {
|
||
return 4 * sideLength
|
||
}
|
||
set {
|
||
// `newValue` 是个隐含的变量,它表示将要设置进来的新值
|
||
sideLength = newValue / 4
|
||
}
|
||
}
|
||
|
||
// 延时加载的属性,只有这个属性第一次被引用时才进行初始化,而不是定义时就初始化
|
||
// subShape 值为 nil ,直到 subShape 第一次被引用时才初始化为一个 Rect 实例
|
||
lazy var subShape = Rect(sideLength: 4)
|
||
|
||
// 监控属性值的变化。
|
||
// 当我们需要在属性值改变时做一些事情,可以使用 `willSet` 和 `didSet` 来设置监控函数
|
||
// `willSet`: 值改变之前被调用
|
||
// `didSet`: 值改变之后被调用
|
||
var identifier: String = "defaultID" {
|
||
// `willSet` 的参数是即将设置的新值,参数名可以指定,如果没有指定,就是 `newValue`
|
||
willSet(someIdentifier) {
|
||
print(someIdentifier)
|
||
}
|
||
// `didSet` 的参数是已经被覆盖掉的旧的值,参数名也可以指定,如果没有指定,就是 `oldValue`
|
||
didSet {
|
||
print(oldValue)
|
||
}
|
||
}
|
||
|
||
// 命名构造函数 (designated inits),它必须初始化所有的成员变量,
|
||
// 然后调用父类的命名构造函数继续初始化父类的所有变量。
|
||
init(sideLength: Int) {
|
||
self.sideLength = sideLength
|
||
// 必须显式地在构造函数最后调用父类的构造函数 super.init
|
||
super.init()
|
||
}
|
||
|
||
func shrink() {
|
||
if sideLength > 0 {
|
||
sideLength -= 1
|
||
}
|
||
}
|
||
|
||
// 函数重载使用 override 关键字
|
||
override func getArea() -> Int {
|
||
return sideLength * sideLength
|
||
}
|
||
}
|
||
|
||
// 类 `Square` 从 `Rect` 继承
|
||
class Square: Rect {
|
||
// 便捷构造函数 (convenience inits) 是调用自己的命名构造函数 (designated inits) 的构造函数
|
||
// Square 自动继承了父类的命名构造函数
|
||
convenience init() {
|
||
self.init(sideLength: 5)
|
||
}
|
||
// 关于构造函数的继承,有以下几个规则:
|
||
// 1. 如果你没有实现任何命名构造函数,那么你就继承了父类的所有命名构造函数
|
||
// 2. 如果你重载了父类的所有命名构造函数,那么你就自动继承了所有的父类快捷构造函数
|
||
// 3. 如果你没有实现任何构造函数,那么你继承了父类的所有构造函数,包括命名构造函数和便捷构造函数
|
||
}
|
||
|
||
var mySquare = Square()
|
||
print(mySquare.getArea()) // 25
|
||
mySquare.shrink()
|
||
print(mySquare.sideLength) // 4
|
||
|
||
// 类型转换
|
||
let aShape = mySquare as Shape
|
||
|
||
// 使用三个等号来比较是不是同一个实例
|
||
if mySquare === aShape {
|
||
print("Yep, it's mySquare")
|
||
}
|
||
|
||
class Circle: Shape {
|
||
var radius: Int
|
||
override func getArea() -> Int {
|
||
return 3 * radius * radius
|
||
}
|
||
|
||
// optional 构造函数,可能会返回 nil
|
||
init?(radius: Int) {
|
||
self.radius = radius
|
||
super.init()
|
||
|
||
if radius <= 0 {
|
||
return nil
|
||
}
|
||
}
|
||
}
|
||
|
||
// 根据 Swift 类型推断,myCircle 是 Optional<Circle> 类型的变量
|
||
var myCircle = Circle(radius: 1)
|
||
print(myCircle?.getArea()) // Optional(3)
|
||
print(myCircle!.getArea()) // 3
|
||
var myEmptyCircle = Circle(radius: -1)
|
||
print(myEmptyCircle?.getArea()) // "nil"
|
||
if let circle = myEmptyCircle {
|
||
// 此语句不会输出,因为 myEmptyCircle 变量值为 nil
|
||
print("circle is not nil")
|
||
}
|
||
|
||
|
||
//
|
||
// MARK: 枚举
|
||
//
|
||
|
||
// 枚举可以像类一样,拥有方法
|
||
|
||
enum Suit {
|
||
case spades, hearts, diamonds, clubs
|
||
func getIcon() -> String {
|
||
switch self {
|
||
case .spades: return "♤"
|
||
case .hearts: return "♡"
|
||
case .diamonds: return "♢"
|
||
case .clubs: return "♧"
|
||
}
|
||
}
|
||
}
|
||
|
||
// 当变量类型明确指定为某个枚举类型时,赋值时可以省略枚举类型
|
||
var suitValue: Suit = .hearts
|
||
|
||
// 非整型的枚举类型需要在定义时赋值
|
||
enum BookName: String {
|
||
case john = "John"
|
||
case luke = "Luke"
|
||
}
|
||
print("Name: \(BookName.john.rawValue)")
|
||
|
||
// 与特定数据类型关联的枚举
|
||
enum Furniture {
|
||
// 和 Int 型数据关联的枚举记录
|
||
case desk(height: Int)
|
||
// 和 String, Int 关联的枚举记录
|
||
case chair(brand: String, height: Int)
|
||
|
||
func description() -> String {
|
||
switch self {
|
||
case .desk(let height):
|
||
return "Desk with \(height) cm"
|
||
case .chair(let brand, let height):
|
||
return "Chair of \(brand) with \(height) cm"
|
||
}
|
||
}
|
||
}
|
||
|
||
var desk: Furniture = .desk(height: 80)
|
||
print(desk.description()) // "Desk with 80 cm"
|
||
var chair = Furniture.chair(brand: "Foo", height: 40)
|
||
print(chair.description()) // "Chair of Foo with 40 cm"
|
||
|
||
|
||
//
|
||
// MARK: 协议
|
||
// 与 Java 的 interface 类似
|
||
//
|
||
|
||
// 协议可以让遵循同一协议的类型实例拥有相同的属性,方法,类方法,操作符或下标运算符等
|
||
// 下面代码定义一个协议,这个协议包含一个名为 enabled 的计算属性且包含 buildShape 方法
|
||
protocol ShapeGenerator {
|
||
var enabled: Bool { get set }
|
||
func buildShape() -> Shape
|
||
}
|
||
|
||
// 协议声明时可以添加 @objc 前缀,添加 @objc 前缀后,
|
||
// 可以使用 is, as, as? 等来检查协议兼容性
|
||
// 需要注意,添加 @objc 前缀后,协议就只能被类来实现,
|
||
// 结构体和枚举不能实现加了 @objc 的前缀
|
||
// 只有添加了 @objc 前缀的协议才能声明 optional 方法
|
||
// 一个类实现一个带 optional 方法的协议时,可以实现或不实现这个方法
|
||
// optional 方法可以使用 optional 规则来调用
|
||
@objc protocol TransformShape {
|
||
optional func reshape()
|
||
optional func canReshape() -> Bool
|
||
}
|
||
|
||
class MyShape: Rect {
|
||
var delegate: TransformShape?
|
||
|
||
func grow() {
|
||
sideLength += 2
|
||
|
||
// 在 optional 属性,方法或下标运算符后面加一个问号,可以优雅地忽略 nil 值,返回 nil。
|
||
// 这样就不会引起运行时错误 (runtime error)
|
||
if let reshape = self.delegate?.canReshape?() {
|
||
// 注意语句中的问号
|
||
self.delegate?.reshape?()
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
//
|
||
// MARK: 其它
|
||
//
|
||
|
||
// 扩展: 给一个已经存在的数据类型添加功能
|
||
|
||
// 给 Square 类添加 `CustomStringConvertible` 协议的实现,现在其支持 `CustomStringConvertible` 协议
|
||
extension Square: CustomStringConvertible {
|
||
var description: String {
|
||
return "Area: \(self.getArea()) - ID: \(self.identifier)"
|
||
}
|
||
}
|
||
|
||
print("Square: \(mySquare)") // Area: 16 - ID: defaultID
|
||
|
||
// 也可以给系统内置类型添加功能支持
|
||
extension Int {
|
||
var customProperty: String {
|
||
return "This is \(self)"
|
||
}
|
||
|
||
func multiplyBy(num: Int) -> Int {
|
||
return num * self
|
||
}
|
||
}
|
||
|
||
print(7.customProperty) // "This is 7"
|
||
print(14.multiplyBy(3)) // 42
|
||
|
||
// 泛型: 和 Java 及 C# 的泛型类似,使用 `where` 关键字来限制类型。
|
||
// 如果只有一个类型限制,可以省略 `where` 关键字
|
||
func findIndex<T: Equatable>(array: [T], _ valueToFind: T) -> Int? {
|
||
for (index, value) in array.enumerate() {
|
||
if value == valueToFind {
|
||
return index
|
||
}
|
||
}
|
||
return nil
|
||
}
|
||
let foundAtIndex = findIndex([1, 2, 3, 4], 3)
|
||
print(foundAtIndex == 2) // true
|
||
|
||
// 自定义运算符:
|
||
// 自定义运算符可以以下面的字符打头:
|
||
// / = - + * % < > ! & | ^ . ~
|
||
// 甚至是 Unicode 的数学运算符等
|
||
prefix operator !!!
|
||
|
||
// 定义一个前缀运算符,使矩形的边长放大三倍
|
||
prefix func !!! (shape: inout Square) -> Square {
|
||
shape.sideLength *= 3
|
||
return shape
|
||
}
|
||
|
||
// 当前值
|
||
print(mySquare.sideLength) // 4
|
||
|
||
// 使用自定义的 !!! 运算符来把矩形边长放大三倍
|
||
!!!mySquare
|
||
print(mySquare.sideLength) // 12
|
||
|
||
// 运算符也可以是泛型
|
||
infix operator <->
|
||
func <-><T: Equatable> (a: inout T, b: inout T) {
|
||
let c = a
|
||
a = b
|
||
b = c
|
||
}
|
||
|
||
var foo: Float = 10
|
||
var bar: Float = 20
|
||
|
||
foo <-> bar
|
||
print("foo is \(foo), bar is \(bar)") // "foo is 20.0, bar is 10.0"
|
||
|
||
```
|